DiGeorge syndrome (DGS) is a genetic disorder known as a clinically variable syndrome with over 180 associated phenotypic features. It is caused by a common human deletion in the 22q11.2 chromosomal region and currently is affecting approximately 1 in 4,000 individuals. Despite the prevalence of inherited diseases mainly due to consanguineous marriages, the current diagnosis of DGS in Saudi Arabia is mainly based on conventional high-resolution chromosome banding (karyotyping) and FISH techniques. However, advanced genome-wide studies for detecting microdeletions or duplications across the whole genome are needed. The aim of this study is to implement and use aCGH technology in clinical diagnosis of the 22q11.2 deletion in Saudi Arabian DGS patients and to confirm its effectiveness compared to conventional FISH and chromosome banding techniques. Thirty suspected DGS patients were assessed for chromosome 22q11.2 deletion using high-resolution G-banding, FISH, and aCGH. The aCGH results were compared with those obtained by the other 2 cytogenetic techniques. G-banding detected the 22q11.2 deletion in only 1 patient in the cohort. Moreover, it detected additional chromosomal aberrations in 3 other patients. Using FISH, allowed for detection of the 22q11.2 deletion in 2 out of 30 patients. Interestingly, the use of aCGH technique showed deletions in the chromosome 22q11.2 region in 8 patients, indicating a 4-fold increase in diagnostic detection capacity compared to FISH. Our results show the effectiveness of aCGH to overcome the limitations of FISH and G-banding in terms of diagnostic yield and allow whole genome screening and detection of a larger number of deletions and/or duplications in Saudi Arabian DGS patients. Except for balanced translocations and inversions, our data demonstrate the suitability of aCGH in the diagnostics of submicroscopic deletion syndromes such as DGS and most chromosomal aberrations or complex abnormalities scattered throughout the human genome. Our results recommend the implementation of aCGH in clinical genomic testing in Saudi Arabia to improve the diagnostic capabilities of health services while maintaining the use of conventional cytogenetic techniques for subsequent validation or for specific and known aberrations whenever required.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.