The cryptocurrency market surpassed the barrier of $100 billion market capitalization in June 2017, after months of steady growth. Despite its increasing relevance in the financial world, a comprehensive analysis of the whole system is still lacking, as most studies have focused exclusively on the behaviour of one (Bitcoin) or few cryptocurrencies. Here, we consider the history of the entire market and analyse the behaviour of 1469 cryptocurrencies introduced between April 2013 and May 2017. We reveal that, while new cryptocurrencies appear and disappear continuously and their market capitalization is increasing (super-)exponentially, several statistical properties of the market have been stable for years. These include the number of active cryptocurrencies, market share distribution and the turnover of cryptocurrencies. Adopting an ecological perspective, we show that the so-called neutral model of evolution is able to reproduce a number of key empirical observations, despite its simplicity and the assumption of no selective advantage of one cryptocurrency over another. Our results shed light on the properties of the cryptocurrency market and establish a first formal link between ecological modelling and the study of this growing system. We anticipate they will spark further research in this direction.
Machine learning and AI-assisted trading have attracted growing interest for the past few years.Here, we use this approach to test the hypothesis that the inefficiency of the cryptocurrency market can be exploited to generate abnormal profits. We analyse daily data for 1, 681 cryptocurrencies for the period between Nov. 2015 and Apr. 2018. We show that simple trading strategies assisted by state-of-the-art machine learning algorithms outperform standard benchmarks. Our results show that non-trivial, but ultimately simple, algorithmic mechanisms can help anticipate the short-term evolution of the cryptocurrency market.
Dark web marketplaces are websites that facilitate trade in illicit goods, mainly using Bitcoin. Since dark web marketplaces are unregulated, they do not offer any user protection, so police raids and scams regularly cause large losses to marketplace participants. However, the uncertainty has not prevented the proliferation of dark web marketplaces. Here, we investigate how the dark web marketplace ecosystem reorganises itself following marketplace closures. We analyse 24 separate episodes of unexpected marketplace closure by inspecting 133 million Bitcoin transactions among 38 million users. We focus on “migrating users” who move their trading activity to a different marketplace after a closure. We find that most migrating users continue their trading activity on a single coexisting marketplace, typically the one with the highest trading volume. User migration is swift and trading volumes of migrating users recover quickly. Thus, although individual marketplaces might appear fragile, coordinated user migration guarantees overall systemic resilience.
Machine learning and AI-assisted trading have attracted growing interest for the past few years. Here, we use this approach to test the hypothesis that the inefficiency of the cryptocurrency market can be exploited to generate abnormal profits. We analyse daily data for 1, 681 cryptocurrencies for the period between Nov. 2015 and Apr. 2018. We show that simple trading strategies assisted by state-of-the-art machine learning algorithms outperform standard benchmarks. Our results show that nontrivial, but ultimately simple, algorithmic mechanisms can help anticipate the short-term evolution of the cryptocurrency market.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.