Purpose Technological advances and the adaption of higher levels of automation serve as a potential cause of aviation incidents and accidents. This study aims to investigate the effect of automated systems on the operator’s performance total load (work, task, information, communication and mental) in highly advanced systems. Design/methodology/approach A questionnaire was designed for aviation operators (Pilots, ATCOs) to understand the intensity to which automation has affected their working environment and personal behavior. In total, 115 responses were received from 44 countries worldwide. Approximately, 66% of respondents were pilots, 27% Air traffic controllers and 7% were both pilots and ATCOs with various experience levels. Findings Based on the results of this questionnaire, this study suggests the following: creating a total load management model to understand the best load balance an operator could perform at providing rapidly updated aviation training methods and approaches investigating the influence and consequences of adding new tools to the operator’s working station and redesigning it to achieve top operator-machine equilibrium redesigning information and alerting systems. Practical implications Intrinsic limitations include an implicit expression of bias in the way questions are phrased, ambiguity in question phrasing that leads to incorrect conclusions and challenges regarding articulating complex concepts. Originality/value In this paper, the authors aimed to assess and investigate factors leading to current and future incidents and accidents resulting from human factors, specifically caused or developed because of highly automated systems.
Purpose Ineffective communication consequences can be life-threatening and drastic. Communication misunderstandings are frequently reported in incidents, accidents and occurrences. This research paper aims to evaluate operator communication load in highly automated systems; distinguish and highlight the communication error factors during flight operations from different perspectives; and provide suggestions to operators to decrease the rate of misunderstandings in aviation communication. Design/methodology/approach This study is based on a questionnaire that investigated the critical communication load, including aviation training, standard phraseology, operators’ native language and cultural background. In addition to the effect of using controller–pilot data link communications will be discussed widely. In this research, 110 responses were obtained from pilots and air traffic controller (ATCOs) that vary in 44 countries; approximately 20% were ATCOs, and 75% were pilots. Findings This study was designed to assess the level of aviation operators communication load in highly automated systems, identify and illustrate the factors that contribute to communication errors during flight operations from multiple viewpoints, and offer recommendations to operators to minimize the rate of misunderstandings in aviation communication. Originality/value This research deals with evaluating the operators’ communication load, which is crucial for the air traffic safety and efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.