We investigated the singlet oxygen quenching ability of several derivatives of trans-resveratrol which have been reported to have significant antioxidant ability, including photoprotective activity. We measured the total rate constants of singlet oxygen removal (k T ) by the methylated resveratrol derivative 1,3-dimethoxy-5-[(E)-2-(4-methoxyphenyl)ethenyl]benzene, and the partially methylated resveratrol derivatives 4-. A protic solvent system results in higher k T values, except for the completely methylated derivative. We also investigated the ability of transresveratrol to directly act as a photosensitizer (rather than via secondary photoproducts resulting from other primary photochemical reactions) for the production of singlet oxygen but found that neither resveratrol nor any of its derivatives are able to do so. We then studied the chemical reactions of the methylated derivative with singlet oxygen. The main pathway consists of a [4 + 2] cycloaddition reaction involving the trans-double bond and the para-substituted benzene ring similar to what has been observed for trans-resveratrol. Unlike trans-resveratrol, the primary singlet oxygen product undergoes a second [4 + 2] cycloaddition with singlet oxygen leading to the formation of diendoperoxides. A second reactivity pathway for both trans-resveratrol and the methylated derivative leads to the formation of aldehydes via cleavage of a transient dioxetane.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.