Earthworms are an important soil taxon as ecosystem engineers, providing a variety of crucial ecosystem functions and services. Little is known about their diversity and distribution at large spatial scales, despite the availability of considerable amounts of local-scale data. Earthworm diversity data, obtained from the primary literature or provided directly by authors, were collated with information on site locations, including coordinates, habitat cover, and soil properties. Datasets were required, at a minimum, to include abundance or biomass of earthworms at a site. Where possible, site-level species lists were included, as well as the abundance and biomass of individual species and ecological groups. This global dataset contains 10,840 sites, with 184 species, from 60 countries and all continents except Antarctica. The data were obtained from 182 published articles, published between 1973 and 2017, and 17 unpublished datasets. Amalgamating data into a single global database will assist researchers in investigating and answering a wide variety of pressing questions, for example, jointly assessing aboveground and belowground biodiversity distributions and drivers of biodiversity change.
Considering the vital role of rooted macrophytes in the aquatic ecosystem, validating assumptions on the interactive effects of herbicides with different modes of action at an environmentally relevant mixture ratio is necessary. We investigated the effects of diflufenican (a carotenoid biosynthesis inhibitor) and iodosulfuron-methyl-sodium (IMS; an acetolactate synthase inhibitor) in a 14-day growth inhibition experiment with Myriophyllum spicatum, wherein single compounds and their combination were tested in parallel (n = 84). The assessment was done using three different methods: significance testing, model deviation ratio (MDR), and mixture interaction factor (MIF). Interactions relative to both concentration addition and independent action were assessed via significance testing. This revealed that diflufenican and IMS acted antagonistically relative to both models for fresh weight and total shoot length (p < 0.05) and that there was slight synergism for the number of side shoots (p < 0.001) relative to concentration addition. The MDR and MIF can only assess interactions relative to the concentration addition model. According to MDR, the mixture appeared to show no interaction (neither antagonistic nor synergistic), whereas the MIF method revealed that the compounds acted antagonistically for fresh weight and that there was a slight synergism for total shoot length and number of side shoots. We conclude that inferences about mixture toxicity interactions are method-and endpoint-dependent, which can have implications for regulatory mixtures assessment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.