The Sleeping Beauty (SB) transposon is a promising technology platform for gene transfer in vertebrates; however, its efficiency of gene insertion can be a bottleneck in primary cell types. A large-scale genetic screen in mammalian cells yielded a hyperactive transposase (SB100X) with approximately 100-fold enhancement in efficiency when compared to the first-generation transposase. SB100X supported 35-50% stable gene transfer in human CD34(+) cells enriched in hematopoietic stem or progenitor cells. Transplantation of gene-marked CD34(+) cells in immunodeficient mice resulted in long-term engraftment and hematopoietic reconstitution. In addition, SB100X supported sustained (>1 year) expression of physiological levels of factor IX upon transposition in the mouse liver in vivo. Finally, SB100X reproducibly resulted in 45% stable transgenesis frequencies by pronuclear microinjection into mouse zygotes. The newly developed transposase yields unprecedented stable gene transfer efficiencies following nonviral gene delivery that compare favorably to stable transduction efficiencies with integrating viral vectors and is expected to facilitate widespread applications in functional genomics and gene therapy.
Antiparasite responses are associated with the recruitment of monocytes that differentiate to macrophages and dendritic cells at the site of infection. Although classically activated monocytic cells are assumed to be the major source of TNF and NO during Trypanosoma brucei brucei infection, their cellular origin remains unclear. In this study, we show that bone marrow-derived monocytes accumulate and differentiate to TNF/inducible NO synthase-producing dendritic cells (TIP-DCs) in the spleen, liver, and lymph nodes of T. brucei brucei-infected mice. Although TIP-DCs have been shown to play a beneficial role in the elimination of several intracellular pathogens, we report that TIP-DCs, as a major source of TNF and NO in inflamed organs, could contribute actively to tissue damage during the chronic stage of T. brucei brucei infection. In addition, the absence of IL-10 leads to enhanced differentiation of monocytes to TIP-DCs, resulting in exacerbated pathogenicity and early death of the host. Finally, we demonstrate that sustained production of IL-10 following IL-10 gene delivery treatment with an adeno-associated viral vector to chronically infected mice limits the differentiation of monocytes to TIP-DCs and protects the host from tissue damage.
Summary. Background: Adeno-associated viral (AAV) and lentiviral vectors are promising vectors for gene therapy for hemophilia because they are devoid of viral genes and have the potential for long-term gene expression. Objectives: To compare the performance of different AAV serotypes (AAV8 and AAV9) vs. lentiviral vectors expressing factor (F) IX. Methods and results: AAV-based and lentiviral vectors were generated that express FIX from the same hepatocyte-specific expression cassette. AAV9 transduced the liver as efficiently as AAV8 and resulted in supra-physiological FIX levels (3000-6000% of normal) stably correcting the bleeding diathesis. Surprisingly, AAV9 resulted in unprecedented and widespread cardiac gene transfer, which was more efficient than with AAV8. AAV8 and AAV9 were not associated with any proinflammatory cytokine induction, in accordance with their minimal interactions with innate immune effectors. In contrast, lentiviral transduction resulted in modest and stable FIX levels near the therapeutic threshold (1%) and triggered a rapid self-limiting proinflammatory response (interleukin-6), which probably reflected their ability to efficiently interact with the innate immune system. Conclusions: AAV8 and 9 result in significantly higher FIX expression levels and have a reduced proinflammatory risk in comparison with lentiviral vectors. The unexpected cardiotropic properties of AAV9 have implications for gene therapy for heart disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.