A three-dimensional electron beam dose calculation algorithm implemented on a commercial radiotherapy treatment planning system is described. The calculation is based on the M. D. Anderson Hospital (M.D.A.H.) pencil beam model, which uses the Fermi-Eyges theory of thick-target multiple Coulomb scattering. To establish the calculation algorithm's accuracy as well as its limitations, it was systematically and extensively tested and evaluated against a set of benchmark measurements. Various levels of dose and spatial tolerances were used to validate the calculation quantitatively. Results are presented in terms of the percentage of data points meeting a specific tolerance level. The algorithm's ability to accurately simulate commonly used clinical setup geometries, including standard or extended SSDs, blocked fields, irregular surfaces, and heterogeneities, is demonstrated. Regions of disagreement between calculations and measurements are also shown. The clinical implication of such disagreements is addressed, and the algorithmic assumptions involved are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.