The preparation and characterization of composite polybenzimidazole (PBI) membranes containing zeolitic imidazolate framework 8 (ZIF-8) and zeolitic imidazolate framework 67 (ZIF-67) is reported. The phosphoric acid doped composite membranes display proton conductivity values that increase with increasing temperatures, maintaining their conductivity under anhydrous conditions. The addition of ZIF to the polymeric matrix enhances proton transport relative to the values observed for PBI and ZIFs alone. For example, the proton conductivity of PBI@ZIF-8 reaches 3.1 × 10−3 S·cm−1 at 200 °C and higher values were obtained for PBI@ZIF-67 membranes, with proton conductivities up to 4.1 × 10−2 S·cm−1. Interestingly, a composite membrane containing a 5 wt.% binary mixture of ZIF-8 and ZIF-67 yielded a proton conductivity of 9.2 × 10−2 S·cm−1, showing a synergistic effect on the proton conductivity.
Perfect dendrimers that contain perfluorinated shells have recently attracted attention because they have been shown to encapsulate polar molecules in supercritical CO(2) and catalytically active metal nanoparticles in perfluorinated solvents. Moreover, they can then be easily separated after reaction from the biphasic organic/fluorous system. In this paper several dendritic architectures that contain perfluorinated shells were derived by covalent modification of glycerol dendrimers ([G0.5]-[G3.5]), hyperbranched polyglycerol, and polyethyleneimine. These core-shell architectures show interesting physicochemical properties. For example, they are soluble in fluorinated solvents, they are able to transport different guest molecules, and they display thermomorphic behavior. The transport capacity of these molecular nanocarriers increases significantly when amino groups are present in the core. Certain functionalized polyethyleneimines that contain perfluorinated shells show high transport capacities (up to 3 dye molecules per nanocarrier) in perfluorinated solvents. Moreover, these perfluoro-functionalized dendritic polyethyleneimines can act as templates that stabilize nanoparticles; for example, encapsulation and subsequent chemical reduction of Ag(I) ions. Silver nanoparticles with a narrow size distribution (3.9+/-1 nm) have been prepared and characterized by transmission electron microscopy. Furthermore, it has been demonstrated that the encapsulated guest molecules remain accessible to small molecules after transport into the fluorous phase. Therefore, dendritic nanocarriers that contain perfluorinated shells are currently being investigated as polar environments in nonpolar reaction media such as fluorous phases and supercritical CO(2), in particular, for application in homogenous catalysis.
The synthesis and crystal structure of a tetranuclear
palladium cluster, [Pd(PC)Br]4 (PC) =
[P(C6H4)Ph2]-),
is described. Cleavage of this cluster with phosphines yields the
mononuclear species Pd(PC)Br(P) in the form of cis and
trans isomers. An equilibrium between mono- and tetranuclear
species is observed for P =
PCBr.
A series of proton exchange membranes based on polybenzimidazole (PBI) were prepared using the low cost ionic liquids (ILs) derived from 1-butyl-3-methylimidazolium (BMIM) bearing different anions as conductive fillers in the polymeric matrix with the aim of enhancing the proton conductivity of PBI membranes. The composite membranes prepared by casting method (containing 5 wt. % of IL) exhibited good thermal, dimensional, mechanical, and oxidative stability for fuel cell applications. The effects of anion, temperature on the proton conductivity of phosphoric acid-doped membranes were systematically investigated by electrochemical impedance spectroscopy. The PBI composite membranes containing 1-butyl-3-methylimidazolium-derived ionic liquids exhibited high proton conductivity of 0.098 S·cm−1 at 120 °C when tetrafluoroborate anion was present in the polymeric matrix. This conductivity enhancement might be attributed to the formed hydrogen-bond networks between the IL molecules and the phosphoric acid molecules distributed along the polymeric matrix.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.