The Vehicle Routing Problem with Time Windows is a complex combinatorial problem with many real-world applications in transportation and distribution logistics. Its main objective is to find the lowest distance set of routes to deliver goods, using a fleet of identical vehicles with restricted capacity, to customers with service time windows. However, there are other objectives, and having a range of solutions representing the trade-offs between objectives is crucial for many applications. Although previous research has used evolutionary methods for solving this problem, it has rarely concentrated on the optimization of more than one objective, and hardly ever explicitly considered the diversity of solutions. This paper proposes and analyzes a novel multi-objective evolutionary algorithm, which incorporates methods for measuring the similarity of solutions, to solve the multi-objective problem. The algorithm is applied to a standard benchmark problem set, showing that when the similarity measure is used appropriately, the diversity and quality of solutions is higher than when it is not used, and the algorithm achieves highly competitive results compared with previously published studies and those from a popular evolutionary multi-objective optimizer.
Abstract. The Vehicle Routing Problem with Time Windows is a complex combinatorial optimization problem which can be seen as a fusion of two well known sub-problems: the Travelling Salesman Problem and the Bin Packing Problem. Its main objective is to find the lowest-cost set of routes to deliver demand, using identical vehicles with limited capacity, to customers with fixed service time windows. In this paper, we consider the minimization of the number of routes and the total cost simultaneously. Although previous evolutionary studies have considered this problem, none of them has focused on the similarity of solutions in the population. We propose a method to measure route similarity and incorporate it into an evolutionary algorithm to solve the bi-objective VRPTW. We have applied this algorithm to a publicly available set of benchmark instances, resulting in solutions that are competitive or better than others previously published.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.