Identifying molecular cancer drivers is critical for precision oncology. Multiple advanced algorithms to identify drivers now exist, but systematic attempts to combine and optimize them on large datasets are few. We report a PanCancer and PanSoftware analysis spanning 9,423 tumor exomes (comprising all 33 of The Cancer Genome Atlas projects) and using 26 computational tools to catalog driver genes and mutations. We identify 299 driver genes with implications regarding their anatomical sites and cancer/cell types. Sequence- and structure-based analyses identified >3,400 putative missense driver mutations supported by multiple lines of evidence. Experimental validation confirmed 60%-85% of predicted mutations as likely drivers. We found that >300 MSI tumors are associated with high PD-1/PD-L1, and 57% of tumors analyzed harbor putative clinically actionable events. Our study represents the most comprehensive discovery of cancer genes and mutations to date and will serve as a blueprint for future biological and clinical endeavors.
The pan-cancer analysis of whole genomes The expansion of whole-genome sequencing studies from individual ICGC and TCGA working groups presented the opportunity to undertake a meta-analysis of genomic features across tumour types. To achieve this, the PCAWG Consortium was established. A Technical Working Group implemented the informatics analyses by aggregating the raw sequencing data from different working groups that studied individual tumour types, aligning the sequences to the human genome and delivering a set of high-quality somatic mutation calls for downstream analysis (Extended Data Fig. 1). Given the recent meta-analysis
Cancers exhibit extensive mutational heterogeneity and the resulting long tail phenomenon complicates the discovery of the genes and pathways that are significantly mutated in cancer. We perform a Pan-Cancer analysis of mutated networks in 3281 samples from 12 cancer types from The Cancer Genome Atlas (TCGA) using HotNet2, a novel algorithm to find mutated subnetworks that overcomes limitations of existing single gene and pathway/network approaches.. We identify 14 significantly mutated subnetworks that include well-known cancer signaling pathways as well as subnetworks with less characterized roles in cancer including cohesin, condensin, and others. Many of these subnetworks exhibit co-occurring mutations across samples. These subnetworks contain dozens of genes with rare somatic mutations across multiple cancers; many of these genes have additional evidence supporting a role in cancer. By illuminating these rare combinations of mutations, Pan-Cancer network analyses provide a roadmap to investigate new diagnostic and therapeutic opportunities across cancer types.
A fundamental goal in cancer research is to understand the mechanisms of cell transformation. This is key to developing more efficient cancer detection methods and therapeutic approaches. One milestone in this path is the identification of all the genes with mutations capable of driving tumors. Since the 1970s, the list of cancer genes has been growing steadily. Because cancer driver genes are under positive selection in tumorigenesis, their observed patterns of somatic mutations across tumors in a cohort deviate from those expected from neutral mutagenesis. These deviations, or signals may be detected by carefully designed bioinformatics methods, which have become state-of-the-art in the identification of driver genes. A systematic approach combining several of these signals could lead to the compendium of mutational cancer genes. We present the IntOGen pipeline, an implementation of this approach to obtain the compendium of mutational drivers, available through intogen.org. Its application to somatic mutations of more than 28,000 tumors of 66 cancer types reveals 568 cancer genes and points to their mechanisms of tumorigenesis. The application of this approach to the ever-growing datasets of somatic tumor mutations will support the continuous refinement of our knowledge of the genetic basis of cancer.
Several large ongoing initiatives that profit from next-generation sequencing technologies have driven--and in coming years will continue to drive--the emergence of long catalogs of missense single-nucleotide variants (SNVs) in the human genome. As a consequence, researchers have developed various methods and their related computational tools to classify these missense SNVs as probably deleterious or probably neutral polymorphisms. The outputs produced by each of these computational tools are of different natures and thus difficult to compare and integrate. Taking advantage of the possible complementarity between different tools might allow more accurate classifications. Here we propose an effective approach to integrating the output of some of these tools into a unified classification; this approach is based on a weighted average of the normalized scores of the individual methods (WAS). (In this paper, the approach is illustrated for the integration of five tools.) We show that this WAS outperforms each individual method in the task of classifying missense SNVs as deleterious or neutral. Furthermore, we demonstrate that this WAS can be used not only for classification purposes (deleterious versus neutral mutation) but also as an indicator of the impact of the mutation on the functionality of the mutant protein. In other words, it may be used as a deleteriousness score of missense SNVs. Therefore, we recommend the use of this WAS as a consensus deleteriousness score of missense mutations (Condel).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.