Mathematically, the execution of an American-style financial derivative is commonly reduced to solving an optimal stopping problem. Breaking the general assumption that the knowledge of the holder is restricted to the price history of the underlying asset, we allow for the disclosure of future information about the terminal price of the asset by modeling it as a Brownian bridge. This model may be used under special market conditions, in particular we focus on what in the literature is known as the “pinning effect”, that is, when the price of the asset approaches the strike price of a highly-traded option close to its expiration date. Our main mathematical contribution is in characterizing the solution to the optimal stopping problem when the gain function includes the discount factor. We show how to numerically compute the solution and we analyze the effect of the volatility estimation on the strategy by computing the confidence curves around the optimal stopping boundary. Finally, we compare our method with the optimal exercise time based on a geometric Brownian motion by using real data exhibiting pinning.
Markov bridges may be useful models in finance to describe situations in which information on the underlying processes is known in advance. However, within the framework of optimal stopping problems, Markov bridges are inherently challenging processes as they are timeinhomogeneous and account for explosive drifts. Consequently, few results are known in the literature of optimal stopping theory related to Markov bridges, all of them confined to the simplistic Brownian bridge.In this paper we make a rigorous analysis of the existence and characterization of the free boundary related to the optimal stopping problem that maximizes the mean of an Ornstein-Uhlenbeck bridge. The result includes the Brownian bridge problem as a limit case. The methodology hereby presented relies on a time-space transformation that casts the original problem into a more tractable one with infinite horizon and a Brownian motion underneath. We conclude by commenting on two different numerical algorithms to compute the free-boundary equation and discuss illustrative cases that shed light on the boundary's shape. In particular, the free boundary does not generally share the monotonicity of the Brownian bridge case.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.