<p>The objective in this study was to evaluate the spatial and temporal variability of the beverage quality by applying the fuzzy classification in the final global sensory analysis, for Coffea canephora Pierre ex A. Froehner, in two consecutive harvests. The studied variables were: fragrance (aroma), flavor, bitterness (sweetness), set, balance, cleaning, aftertaste, mouth feel, uniformity, salinity (acidity) and drink (global note). To the average overall scores of the drinks obtained on the cup-tasting at 80.0 points of a sampling, the mesh has applied the function of association of the fuzzy classification linear model to determine the degree of pertinence. The data were analyzed by the descriptive statistics and then by geostatistics to verify the existence and quantify the degree of spatial dependence of the variables. In the interval classified as “very good coffee” is found in the global average grade, in the two harvests. The methodology fuzzy applied in the global beverage note of the coffee conilon seminal made it possible to determine their spatial variability in the same distribution pattern in the two harvests, close ranges, and adjustments to the spherical model, which was confirmed by the spatial correlation of 61.6% among the fuzzy maps for the global score</p>
The nutritional status of the coffee tree is influenced by the concentration of nutrients in the soil of the growing area. The objective of this work was to evaluate, using canonical correlation, the linear relationships between chemical attributes of soil and nutrients of leaf tissues in seminal coffee. The work was developed in a commercial crop located in the municipality of Cachoeiro de Itapemirim, the southern region of the state of Espírito Santo. In the crop, an irregular sampling mesh was constructed, totalling 80 georeferenced points. The canonical correlation analysis was performed considering the original data observed in two consecutive conilon coffee harvests, 2015/16 and 2016/17, to verify the associations between a (dependent) group formed by foliar nutrients (N, P, K, Ca, Mg, S, B, Cu, Fe, Mn, and Zn) and an independent group formed by soil chemical attributes (pH, Ca, Al, K, S, P, Cu, Fe, Mn and Zn). Even if nutrients are available, that is, available in a satisfactory amount in the soil, it can happen that it does not reach the leaf tissue, resulting in a deficiency for some nutrients. There was a direct relationship between the concentration of K in the leaf tissue and K in the soil in the two harvests. Other soil attributes, such as Organic Matter, Fe, Mn, and S, also influenced this relationship, showing that the soil attributes in the independent group interact together on the nutrients in the leaf tissue. There is an inverse relationship between the concentrations of K in the leaf tissue and the Mn in the soil in the two harvests, showing that the excess of Mn in the soil is influencing the K deficiency in the leaf tissue.
Estimativa da produtividade de café conilon utilizando técnicas de cokrigagemEstimar a variabilidade espacial de uma cultura em campo auxilia no entendimento de alguns fenômenos que podem estar correlacionados com a sua produtividade. Este trabalho teve, como objetivo, estimar, pelo método da cokrigagem, a produtividade (kg ha -1 ) do cafeeiro conilon, em três safras consecutivas, tendo como covariável o número de ramos produtivos (plagiotrópicos) por planta. No centro de uma lavoura, demarcou-se uma malha amostral, com 109 pontos georreferenciados, sendo cada ponto constituído por cinco plantas. Fez-se o acompanhamento, por três safras agríco-las consecutivas, contando-se os ramos produtivos e realizando-se a colheita manual. O café colhido foi separado, para cada estádio de maturação (cereja, verdoengo e verde), e secado para umidade padrão de 12%, determinando-se a produtividade de café seco em coco (kg ha -1 ). A produtividade e o número de ramos produtivos por ponto amostral apresentaram correlação linear e dependência espacial nas três safras. As estimativas das produtividades pelos núme-ros de ramos produtivos apresentaram similaridades na cokrigagem, mostrando ser a covariável ramo produtivo eficiente na estimativa da produtividade do café conilon (Robusta Tropical). Palavras Use of kriging techniques to estimate Conilon coffee productivityKnowing the spatial variability of a coffee-crop helps to understand some phenomena which can be correlated with its productivity. This study aimed estimating the productivity (kg ha -1 ) of conilon coffee-tree in three consecutive harvests using the cokriging method, considering the number of plagiotropic branches per plant as a covariable. In the center of a coffee-crop we settled a sampling grid with 109 georeferenced points, each point consisted of five plants. Subsequently the vegetative branches were counted for three consecutive growing seasons before performing manual harvesting of coffee beans. The harvested coffee was separated into cherry, yellowish and green and dried to a standard moisture of 12%. The dry cherry productivity (kg ha -1 ) was then evaluated. The three harvests evaluated showed linear correlation and spatial dependence among productivity and number of vegetative branches. Estimation of productivity by the number of vegetative branches showed similarities in cokriging, indicating that vegetative branches is an efficient covariable to estimate conilon coffee productivity.
Conhecer a quantidade, intensidade e a distribuição espacial da precipitação pluvial contribuem para o gerenciamento de ações em vários setores da atividade humana. Nesse trabalho objetivou-se estudar a variabilidade espacial da precipitação no estado do Espírito Santo para cada mês, utilizando postos de observações da Agência Nacional de Águas (ANA), com intervalos de observações de 25 a 70 anos. Ao analisar a série de precipitação pluvial mensal constatou-se a presença de elevada amplitude total nos dados. Sendo assim, optou-se em trabalhar com o valor dos percentis 75 da série em cada mês como a maior precipitação, evitando informar anomalias climáticas. Os dados foram analisados pela estatística clássica determinando as medidas de posição e dispersão. Na sequência utilizou a geoestatística para definição de semivariogramas e a construção de mapas da distribuição espacial da precipitação em cada mês, utilizando a krigagem ordinária. Os meses com menor ocorrência do percentil 75, definindo a estação de seca, foram de abril a setembro. Os percentis 75 da precipitação pluvial mensal apresenta forte dependência espacial, com exceção no mês de janeiro, sendo que os alcances de dependência espacial variam de 41,6 a 210,6 km entre os meses. A distribuição espacial dos percentis 75 da precipitação pluvial evidenciou diferentes microclimas no estado, mostrando que os municípios que compõem a região noroeste tem menor ocorrência de precipitação, principalmente no mês de junho. O mês de dezembro, novembro e janeiro apresentam maiores lâminas de precipitação pluvial.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.