Diagnostic accuracy of needle-based optical coherence tomography (OCT) for prostate cancer detection by visual and quantitative analysis is defined. 106 three-dimensional (3-D)-OCT data sets were acquired in 20 prostates after radical prostatectomy and precisely matched with pathology. OCT images were grouped per histological category. Two reviewers performed blind assessments of the OCT images. Sensitivity and specificity for malignancy detection were calculated. Quantitative analyses by automated optical attenuation coefficient calculation were performed. OCT can reliably differentiate between fat, cystic, and regular atrophy and benign glands. The overall sensitivity and specificity for malignancy detection was 79% and 88% for reviewer 1 and 88% and 81% for reviewer 2. Quantitative analysis for differentiation between stroma and malignancy showed a significant difference (4.6 mm - 1 versus 5.0 mm - 1 Mann-Whitney U-test p < 0.0001). A Kruskal-Wallis test showed a significant difference in median attenuation coefficient between stroma, inflammation, Gleason 3, and Gleason 4 (4.6, 4.1, 5.9, and 5.0 mm - 1, respectively). However, attenuation coefficient varied per patient and a related-samples Wilcoxon signed-rank test showed no significant difference per patient (p = 0.17). This study confirmed the one to one correlation of histopathology and OCT. Precise matching showed that most histological tissues categories in the prostate could be distinguished by their unique pattern in OCT images. In addition, the optical attenuation coefficient can play a role in the differentiation between stroma and malignancy; however, a per patient analysis of the optical attenuation coefficient did not show a significant difference.
We successfully designed and applied a customized tool to process radical prostatectomy specimens to improve the coregistration of whole mount histology sections to fresh tissue optical coherence tomography pullback measurements. This technique will be crucial in validating the results of optical coherence tomography imaging studies with histology and can easily be applied in other solid tissues as well, for example, lung, kidney, breast, and liver. This will help improve the efficacy of optical coherence tomography in cancer detection and staging in solid organs.
Optical coherence tomography (OCT), enables high-resolution 3D imaging of the morphology of light scattering tissues. From the OCT signal, parameters can be extracted and related to tissue structures. One of the quantitative parameters is the attenuation coefficient; the rate at which the intensity of detected light decays in depth. To couple the quantitative parameters with the histology one-to-one registration is needed. The primary aim of this study is to validate a registration method of quantitative OCT parameters to histological tissue outcome through one-to-one registration of OCT with histology. We matched OCT images of unstained fixated prostate tissue slices with corresponding histology slides, wherein different histologic types were demarcated. Attenuation coefficients were determined by a supervised automated exponential fit (corrected for point spread function and sensitivity roll-off related signal losses) over a depth of 0.32 mm starting from 0.10 mm below the automatically detected tissue edge. Finally, the attenuation coefficients corresponding to the different tissue types of the prostate were compared. From the attenuation coefficients, we produced the squared relative residue and goodness-of-fit metric R 2 . This article explains the method to perform supervised automated quantitative analysis of OCT data, and the one-to-one registration of OCT extracted quantitative data with histopathological outcomes. K E Y W O R D Shistopathology, one-to-one registration, optical coherence tomography, prostate
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.