The function of the class I TCP transcription factor TCP15 from Arabidopsis thaliana has been studied through the analysis of plants that express a fusion of this protein to the EAR repressor domain. Constitutive expression of TCP15-EAR produces growth arrest at the seedling stage, before leaf emergence. Expression of the repressor fusion from the AtTCP15 promoter produces small plants with leaves whose margins progressively curve upwards, starting from the basal part of the lamina. Leaves contain smaller and less differentiated cells, both on the adaxial and abaxial sides. The abaxial domain is relatively enlarged, with disorganized cells separated by empty spaces. TCP15-EAR also affects the growth of leaf petioles, flower pedicels, and anther filaments. Flowers show reduced elongation of the three outer whorls and altered gynoecia with irregular carpel surfaces and enlarged repla. Ectopic stigma-like structures develop from medial and basal parts of the replum. TCP15-EAR produces an increase in expression of the boundary-specific genes LOB, CUC1, and CUC2. Changes in CUC1 and CUC2 expression can be explained by the existence of lower levels of miR164 in leaves and the repression of IAA3/SHY2 and the SAUR-like gene At1g29460 in leaves and flowers. TCP15 binds to the promoter regions of IAA3/SHY2 and At1g29460, suggesting that these genes may be direct targets of the transcription factor. The results indicate that TCP15 regulates the expression of boundary-specific genes through a pathway that affects auxin homeostasis and partially overlaps with the one modulated by class II CIN-like TCP proteins.
Scab is an important disease of wheat throughout the world. Fusarium graminearum is the species most frequently isolated in Argentina. Histopathological modifications observed in Pro INTA Oasis (a susceptible Argentine cultivar) and in Sumai 3 (a resistant Chinese cultivar) from the time of inoculation, at the spike emergence stage, until major disease expression (10.5 days postinoculation in the susceptible cultivar) are described. Both cultivars showed a horizontal progression of disease, from anthers to glumes, and a vertical progression, from anthers to rachis. Chlorenchyma was the most damaged tissue, with progressive chlorosis and necrosis. Walls of mesophyll, parenchyma, and epidermal cells around the lesions became thicker, particularly in the resistant cultivar. Vessels and sieve tubes were occluded, particularly the former in the susceptible cultivar and the latter in the resistant cultivar. Possible relationships between tissue changes generated during disease progression and known resistance mechanisms are discussed.
Inflorescence development in Panicum maximum and Urochloa plantaginea was comparatively studied with scanning electron and light microscopy to test the transfer of P. maximum to Urochloa and to look for developmental features applicable to future cladistic studies of the phosphoenol pyruvate carboxykinase (PCK) subtype of C(4) photosynthesis clade (P. maximum and some species of Brachiaria, Chaetium, Eriochloa, Melinis, and Urochloa). Eleven developmental features not discernable in the mature inflorescence were found: direction of branch differentiation; origins of primary branches; apical vs. intercalary development of the main axis; direction of spikelet differentiation; direction of glume, lemma and palea differentiation; position of the lower glume (in some cases); size of the floret meristem; pattern of distal floret development; pattern of gynoecium abortion; differential pollen development between proximal and distal floret; and glume elongation. Inflorescence homologies between P. maximum and U. plantaginea are also clarified. Panicum maximum and U. plantaginea differ not only in their mature inflorescence structure but also in eight fundamental developmental features that exclude P. maximum from Urochloa. The following developmental events are related to sex expression: size of floret meristem, gynoecium abortion, pollen development delay in the proximal floret, glume elongation and basipetal floret maturation at anthesis.
The PCK Clade, represented by six to nine genera, is a monophyletic group situated within the Paniceae tribe. The highly diverse inflorescences within the PCK Clade provide an interesting system for the study of morphological evolution and also may aid in better understanding its unclear systematics. The inflorescence structure of 110 members of the PCK Clade has been investigated. Inflorescences are polytelic showing different levels of truncation. At least 21 different inflorescence subtypes were identified. Fourteen variable inflorescence characters were found, among which some have suprageneric or infrageneric value and others are polymorphic.A key for the identification of inflorescence types is presented. Nine processes have been identified as responsible for inflorescence diversification. Highly branched inflorescences with different internode lengths are present in the basal genus whereas truncated inflorescence morphologies appear late in the history of the clade. The precise timing of morphological changes is impossible to assess until we have a well supported phylogeny for the PCK Clade.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.