Brain oscillations exhibit long-range temporal correlations (LRTCs), which reflect the regularity of their fluctuations: low values representing more random (decorrelated) while high values more persistent (correlated) dynamics. LRTCs constitute supporting evidence that the brain operates near criticality, a state where neuronal activities are balanced between order and randomness. Here, healthy adults used closed-loop brain training (neurofeedback, NFB) to reduce the amplitude of alpha oscillations, producing a significant increase in spontaneous LRTCs post-training. This effect was reproduced in patients with post-traumatic stress disorder, where abnormally random dynamics were reversed by NFB, correlating with significant improvements in hyperarousal. Notably, regions manifesting abnormally low LRTCs (i.e., excessive randomness) normalized toward healthy population levels, consistent with theoretical predictions about selforganized criticality. Hence, when exposed to appropriate training, spontaneous cortical activity reveals a residual capacity for "self-tuning" its own temporal complexity, despite manifesting the abnormal dynamics seen in individuals with psychiatric disorder. Lastly, we observed an inverse-U relationship between strength of LRTC and oscillation amplitude, suggesting a breakdown of long-range dependence at high/low synchronization extremes, in line with recent computational models. Together, our findings offer a broader mechanistic framework for motivating research and clinical applications of NFB, encompassing disorders with perturbed LRTCs.
As part of the Dutch national science program “Professional Games for Professional Skills” we developed a stress-exposure biofeedback training in virtual reality (VR) for the Dutch police. We aim to reduce the acute negative impact of stress on performance, as well as long-term consequences for mental health by facilitating physiological stress regulation during a demanding decision task. Conventional biofeedback applications mainly train physiological regulation at rest. This might limit the transfer of the regulation skills to stressful situations. In contrast, we provide the user with the opportunity to practice breathing regulation while they carry out a complex task in VR. This setting poses challenges from a technical – (real-time processing of noisy biosignals) as well as from a user-experience perspective (multi-tasking). We illustrate how we approach these challenges in our training and hope to contribute a useful reference for researchers and developers in academia or industry who are interested in using biosignals to control elements in a dynamic virtual environment.
Despite recent attempts to use electroencephalogram (EEG) neurofeedback (NFB) as a tool for rehabilitation of motor stroke, its potential for improving neurological impairments of attention—such as visuospatial neglect—remains underexplored. It is also unclear to what extent changes in cortical oscillations contribute to the pathophysiology of neglect, or its recovery. Utilizing EEG-NFB, we sought to causally manipulate alpha oscillations in 5 right-hemisphere stroke patients in order to explore their role in visuospatial neglect. Patients trained to reduce alpha oscillations from their right posterior parietal cortex (rPPC) for 20 minutes daily, over 6 days. Patients demonstrated successful NFB learning between training sessions, denoted by improved regulation of alpha oscillations from rPPC. We observed a significant negative correlation between visuospatial search deficits (i.e., cancellation test) and reestablishment of spontaneous alpha-rhythm dynamic range (i.e., its amplitude variability). Our findings support the use of NFB as a tool for investigating neuroplastic recovery after stroke and suggest reinstatement of intact parietal alpha oscillations as a promising target for reversing attentional deficits. Specifically, we demonstrate for the first time the feasibility of EEG-NFB in neglect patients and provide evidence that targeting alpha amplitude variability might constitute a valuable marker for clinical symptoms and self-regulation.
It is widely recognized that police performance may be hindered by psychophysiological state changes during acute stress. To address the need for awareness and control of these physiological changes, police academies in many countries have implemented Heart-Rate Variability (HRV) biofeedback training. Despite these trainings now being widely delivered in classroom setups, they typically lack the arousing action context needed for successful transfer to the operational field, where officers must apply learned skills, particularly when stress levels rise. The study presented here aimed to address this gap by training physiological control skills in an arousing decision-making context. We developed a Virtual-Reality (VR) breathing-based biofeedback training in which police officers perform deep and slow diaphragmatic breathing in an engaging game-like action context. This VR game consisted of a selective shoot/don’t shoot game designed to assess response inhibition, an impaired capacity in high arousal situations. Biofeedback was provided based on adherence to a slow breathing pace: the slower and deeper the breathing, the less constrained peripheral vision became, facilitating accurate responses to the in-game demands. A total of nine male police trainers completed 10 sessions over a 4-week period as part of a single-case experimental ABAB study-design (i.e., alternating sessions with and without biofeedback). Results showed that eight out of nine participants showed improved breathing control in action, with a positive effect on breathing-induced low frequency HRV, while also improving their in-game behavioral performance. Critically, the breathing-based skill learning transferred to subsequent sessions in which biofeedback was not presented. Importantly, all participants remained highly engaged throughout the training. Altogether, our study showed that our VR environment can be used to train breathing regulation in an arousing and active decision-making context.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.