The chemical composition of the volatile fraction obtained by head-space solid phase microextraction (HS-SPME), single drop microextraction (SDME) and the essential oil obtained by cold-press from the peels of C. sinensis cv. valencia were analyzed employing gas chromatography-flame ionization detector (GC-FID) and gas chromatography-mass spectrometry (GC-MS). The main components were limonene (61.34 %, 68.27 %, 90.50 %), myrcene (17.55 %, 12.35 %, 2.50 %), sabinene (6.50 %, 7.62 %, 0.5 %) and α-pinene (0 %, 6.65 %, 1.4 %) respectively obtained by HS-SPME, SDME and cold-press. Then a quantitative structure-retention relationship (QSRR) study for the prediction of retention indices (RI) of the compounds was developed by application of structural descriptors and the multiple linear regression (MLR) method. Principal components analysis was used to select the training set. A simple model with low standard errors and high correlation coefficients was obtained. The results illustrated that linear techniques such as MLR combined with a successful variable selection procedure are capable of generating an efficient QSRR model for prediction of the retention indices of different compounds. This model, with high statistical significance (R2 train = 0.983, R2 test = 0.970, Q2 LOO = 0.962, Q2 LGO = 0.936, REP(%) = 3.00), could be used adequately for the prediction and description of the retention indices of the volatile compounds
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.