<div class="section abstract"><div class="htmlview paragraph">The safety, performance, and operational life of power dense Lithium-ion batteries used in Hybrid and Electric Vehicles are dependent on the operating temperature. Modeling and simulation are essential tools used to accelerate the design process of optimal thermal management systems. However, high-fidelity 3D computational fluid dynamics (CFD) simulation of such systems is often difficult and computationally expensive. In this paper, we demonstrate a multi-part coupled system model for simulating the heating/cooling system of the traction battery at a module level. We have reduced computational time by employing reduced-order modeling (ROM) framework on separate 3D CFD models of the battery module and the cooling plate. The order of the thermal ROM has also been varied to study the trade-off between accuracy, fidelity, and complexity. The ROMs are bidirectionally coupled to an empirical battery model built from in-house test data. This makes sure that we capture the interdependence of different parameters and behaviors and closely resemble the real system behavior. The complete system model is built up in a commercial system simulation platform and has the capability of simulating the system response to drive-cycles, charge profiles or any system dependent test conditions, under the influence of various heating/cooling control algorithms.</div></div>
Electrolytic ablation is a technique that can remove nonresectable tumors from internal organs (such as liver, kidney, pancreas, etc.) with highly localized control to minimize harm to adjoining healthy tissue. Here, we aim to utilize the principle of electrolytic ablation in an implantable platform and power it by an external ultrasonic wave. The implantable micro electrolytic ablation (IMEA) will address challenges of the current existing tethered method such as constraints in electrode size, multiple targets and repeated treatments in case of cancer recurrence. We characterized the prototype of IMEA in an agarose gel containing phenolphthalein to simulate internal body tissue. Color change in phenolphthalein shows that the device responds to external ultrasonic stimulation and shows electrolytic behavior in an area around the electrodes that spreads outward with time. Overall, the IMEA could achieve 0.614±0.01 cm 2 in ablation area (cathode) when ~190 mW/cm 2 ultrasonic intensity was applied for 60min.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.