SUMMARY Impaired consciousness in temporal lobe seizures has a major negative impact on quality of life. The prevailing view holds that this disorder impairs consciousness by seizure spread to the bilateral temporal lobes. We propose instead that seizures invade subcortical regions and depress arousal, causing impairment through decreases rather than through increases in activity. Using functional magnetic resonance imaging in a rodent model, we found increased activity in regions known to depress cortical function including lateral septum and anterior hypothalamus. Importantly, we found suppression of intralaminar thalamic and brainstem arousal systems and suppression of the cortex. At a cellular level, we found reduced firing of identified cholinergic neurons in the brainstem pedunculopontine tegmental nucleus and basal forebrain. Finally, we used enzyme-based amperometry to demonstrate reduced cholinergic neurotransmission in both cortex and thalamus. Decreased subcortical arousal is a novel mechanism for loss of consciousness in focal temporal lobe seizures.
Impaired breathing, cardiac function, and arousal during and after seizures are important causes of morbidity and mortality. Previous work suggests that these changes are associated with depressed brainstem function in the ictal and post-ictal periods. Lower brainstem serotonergic systems are postulated to play an important role in cardiorespiratory changes during and after seizures, whereas upper brainstem serotonergic and other systems regulate arousal. However, direct demonstration of seizure-associated neuronal activity changes in brainstem serotonergic regions has been lacking. Here, we performed multiunit and single-unit recordings from medullary raphe and midbrain dorsal raphe nuclei in an established rat seizure model while measuring changes in breathing rate and depth as well as heart rate. Serotonergic neurons were identified by immunohistochemistry. Respiratory rate, tidal volume, and minute ventilation were all significantly decreased during and after seizures in this model. We found that population firing of neurons in the medullary and midbrain raphe on multiunit recordings was significantly decreased during the ictal and post-ictal periods. Single-unit recordings from identified serotonergic neurons in the medullary raphe revealed highly consistently decreased firing during and after seizures. In contrast, firing of midbrain raphe serotonergic neurons was more variable, with a mixture of increases and decreases. The markedly suppressed firing of medullary serotonergic neurons supports their possible role in simultaneously impaired cardiorespiratory function in seizures. Decreased arousal likely arises from depressed population activity of several neuronal pools in the upper brainstem and forebrain. These findings have important implications for preventing morbidity and mortality in people living with epilepsy.
Summary Objective Understanding the neural mechanisms that support human consciousness is an important frontier in neuroscience and medicine. We previously developed a rodent model of temporal lobe seizures that recapitulates the human electroencephalography (EEG) signature of ictal and postictal neocortical slow waves associated with behavioral impairments in level of consciousness. The mechanism of slow-wave production in epilepsy may involve suppression of the subcortical arousal systems including the brainstem and intralaminar thalamic nuclei. We hypothesized that intralaminar thalamic stimulation may lead to electrophysiologic and functional rescue from postictal slow waves and behavioral arrest. Methods We electrically stimulated the central lateral thalamic nucleus (a member of the intralaminar nuclei) under anesthesia and after electrically induced hippocampal seizures in anesthetized and in awake-behaving animal model preparations. Results We demonstrated a proof-of-principle restoration of electrophysiologic and behavioral measures of consciousness by stimulating the intralaminar thalamic nuclei after seizures. We measured decreased cortical slow waves and increased desynchronization and multiunit activity in the cortex with thalamic stimulation following seizures. Functionally, thalamic stimulation produced resumption of exploratory behaviors in the postictal state. Significance Targeting of nodes in the neural circuitry of consciousness has important medical implications. Impaired consciousness with epilepsy has dangerous consequences including decreased school/work performance, social stigmatization, and impaired airway protection. These data suggest a novel therapeutic approach for restoring consciousness after seizures. If paired with responsive neurostimulation, this may allow rapid implementation to improve level of consciousness in patients with epilepsy.
IMPORTANCE Seizures recur in as many as half of patients who undergo surgery for drug-resistant temporal lobe epilepsy (TLE). Understanding why TLE is resistant to surgery in some patients may reveal insights into epileptogenic networks and direct new therapies to improve outcomes. OBJECTIVE To characterize features of surgically refractory TLE. DESIGN, SETTING, AND PARTICIPANTS Medical records from a comprehensive epilepsy center were retrospectively reviewed for 131 patients who received a standard anteromedial temporal resection by a single surgeon from January 1, 2000, to December 31, 2015. Thirteen patients were excluded for having less than 1 year of follow-up. Patients at the highest risk for seizure recurrence were identified. Intracranial electroencephalogram (iEEG) analyses generated 3-dimensional seizure spread representations and quantified rapid seizure spread. The final analyses of seizure outcome and follow-up data were performed in June 2017. MAIN OUTCOMES AND MEASURES The Engel class seizure outcome following surgery was evaluated for all patients, defining seizure recurrence as Engel class II or greater. Intracranial recordings of neocortical grids/strips and depth electrodes were analyzed visually for seizure spread. Fast β power was projected onto reconstructions of patients' brain magnetic resonance imaging scans to visualize spread patterns and was quantified to compare power within vs outside resective margins. RESULTS Of 118 patients with 1 year of follow-up or more (mean [SD], 6.5 [4.6] years), 66 (55.9%) were women and 52 (44.1%) were men (median age, 39 years [range, 4-66 years]). The cumulative probability of continuous Engel class I seizure freedom since surgery at postoperative year 10 and afterward was 65.6%, with 92% of recurrences in years 1 to 3. Multivariable statistical analyses found that the selection for iEEG study was the most reliable predictor of seizure recurrence, with a mixed-effects model estimating that the Engel score in the iEEG cohort was higher by a mean (SD) of 1.1 (0.33) (P = .001). In patients with iEEG results, rapid seizure spread in less than 10 seconds was associated with recurrence (hazard ratio, 5.99; 95% CI, 1.7-21.1; P < .01). In the first 10 seconds of seizures, fast β power activity outside the resective margins in the lateral temporal cortex was significantly greater in patients whose seizures recurred compared with patients who were seizure-free (mean [SEM], 137.5% [16.8%] vs 93.4% [4.6%]; P < .05). CONCLUSIONS AND SIGNIFICANCE Rapid seizure spread outside anteromedial temporal resection resective margins plays a significant role in the surgical failure of drug-resistant TLE. Seizure control after epilepsy surgery might be improved by investigating areas of early spread as candidates for resection or neuromodulation.
Impaired consciousness occurs suddenly and unpredictably in people with epilepsy, markedly worsening quality of life and increasing risk of mortality. Focal seizures with impaired consciousness are the most common form of epilepsy and are refractory to all current medical and surgical therapies in about one-sixth of cases. Restoring consciousness during and following seizures would be potentially transformative for these individuals. Here, we investigate deep brain stimulation to improve level of conscious arousal in a rat model of focal limbic seizures. We found that dual-site stimulation of the central lateral nucleus of the intralaminar thalamus (CL) and the pontine nucleus oralis (PnO) bilaterally during focal limbic seizures restored normal-appearing cortical electrophysiology and markedly improved behavioral arousal. In contrast, single-site bilateral stimulation of CL or PnO alone was insufficient to achieve the same result. These findings support the "network inhibition hypothesis" that focal limbic seizures impair consciousness through widespread inhibition of subcortical arousal. Driving subcortical arousal function would be a novel therapeutic approach to some forms of refractory epilepsy and may be compatible with devices already in use for responsive neurostimulation. Multisite deep brain stimulation of subcortical arousal structures may benefit not only patients with epilepsy but also those with other disorders of consciousness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.