Soil moisture deficit is an essential element in the estimation of irrigation demands, both spatially and temporarily. The determination of temporal and spatial variations of soil moisture in a river basin is challenging in many aspects; however, distributed hydrological modelling with remote sensing inputs is an effective way to determine soil moisture. In this research, a water demand module was developed for a satellite-based National Hydrological Model—India (NHM-I) to estimate distributed irrigation demands based on soil moisture deficits. The NHM-I is a conceptual distributed model that was explicitly developed to utilize the products from remote sensing satellites. MOD13Q1.5 data were used in this study to classify paddy and irrigated dry crops. Along with the above data, the DEM, Leaf Area Index, FAO soil map, and crop characteristics data were also used as inputs. The NHM-I with water demand module was evaluated in the Damodar river basin, India, from 2009 to 2018. The integrated NHM-I model simulated the irrigation demands effectively with remote sensing data. The temporal analysis reveals that soil moisture deficits in the Kharif season varied annually from 2009 to 2018; however, soil moisture deficits in the Rabi season were almost constant. The 50% Allowable Moisture Depletion (AMD-50) scenario can reduce the irrigation demand of 1966 MCM compared to the Zero Allowable Moisture Depletion (AMD-0) scenario. The highest annual irrigation demand (8923 MCM) under the AMD-50 scenario occurred in the 2015–2016 season, while the lowest (6344 MCM) happened in 2013–2014 season. With a new water demand module and remote sensing inputs, the NHM-I will provide a platform to assess spatial and temporal irrigation demands and soil moisture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.