In this paper, the impact of atmospheric stability on a wind turbine wake is studied experimentally and numerically. The experimental approach is based on full-scale (nacelle based) pulsed lidar measurements of the wake flow field of a stall-regulated 500 kW turbine at the DTU Wind Energy, Risø campus test site. Wake measurements are averaged within a mean wind speed bin of 1 m s 1 and classified according to atmospheric stability using three different metrics: the Obukhov length, the Bulk-Richardson number and the Froude number. Three test cases are subsequently defined covering various atmospheric conditions. Simulations are carried out using large eddy simulation and actuator disk rotor modeling. The turbulence properties of the incoming wind are adapted to the thermal stratification using a newly developed spectral tensor model that includes buoyancy effects. Discrepancies are discussed, as basis for future model development and improvement. Finally, the impact of atmospheric stability on large-scale and small-scale wake flow characteristics is presently investigated.
Introduction: Inflammatory myofibroblastic tumor (IMT), a locally aggressive neoplasm capable of metastasis, may show an IgG4-rich lymphoplasmacytic infiltrate. Prior reports suggest that storiform-fibrosis and obliterative phlebitis aid in the distinction of IMT from IgG4-related diseases. Herein, we highlight the morphologic overlap between the two diseases, and emphasize the importance of a multiplex fusion assay in the distinction of IgG4-RD from IMT. Methods: We identified 7 IMTs with morphologic and immunohistochemical features of IgG4-RD; 3 patients were originally diagnosed with IgG4-RD. Demographic, clinical and morphologic data was recorded. We also re-evaluated 56 patients with IgG4-RD. We performed immunohistochemistry for IgG4, IgG, ALK and ROS1. In situ hybridization for IgG4 and IgG was performed in selected cases. A multiplex next-generation sequencing (NGS) based RNA assay for gene fusions was performed to detect all known IMT-related gene fusions. Results: All 7 IMTs showed a dense lymphoplasmacytic infiltrate and storiform-type fibrosis, with obliterative phlebitis noted in 3 cases. The neoplastic stromal cells constituted <5% of overall cellularity and stromal atypia was either absent or focal and mild. Elevated numbers of IgG4 positive cells and increased IgG4 to IgG ratio was identified in all cases. Four cases showed ALK related abnormalities; while two patients showed ROS1 and NTRK3 fusions. One tumor was negative for known IMT-related gene fusions. All 56 IgG4-RD cases were negative for ALK and ROS1 on immunohistochemistry; 6 cases were negative on the fusion assay. Conclusion: Highly-inflamed IMTs are indistinguishable from IgG4-RD both histologically and on immunohistochemistry for IgG4. We advocate scrutinizing patients with presumptive single organ IgG4-RD for IMT and the diagnostic algorithm should include ALK and ROS1 immunohistochemistry and, in selected cases, a NGS-based fusion assay that covers known IMTassociated gene fusions.
The evolving classification of round cell sarcomas is driven by molecular alterations. EWSR1-PATZ1 fusion positive spindle and round cell sarcoma is one such new tumor entity. Herein, we report two EWSR1-PATZ1 fusion positive spindle and round cell sarcomas with overlapping histological features and polyphenotypic differentiation. The intraabdominal tumors affected female patients, 31 and 53-year-old. Both tumors showed sheets and nests of round to spindle cells, fine chromatin, tiny conspicuous nucleoli, moderate cytoplasm and thick bands of intratumoral fibrosis. On immunohistochemistry, both tumors showed positivity for CD99, desmin, myogenin, myoD1, S100, Sox10, CD34 and GFAP and were negative for keratin. Fluorescence insitu hybridization revealed rearrangement at EWSR1 locus. Next generation sequencing based RNA fusion assay revealed EWSR1-PATZ1 fusion in both cases. EWSR1-PATZ1 fusion positive spindle and round cell sarcomas show abundant intratumoral fibrosis and polyphenotypic differentiation, thus mimicking a range of tumors including desmoplastic small round cell tumor. The precise classification of this spindle and round cell sarcoma and its relationship to the Ewing sarcoma family of tumors remains to be determined.
A spectral tensor model is presented for turbulent fluctuations of wind velocity components and temperature, assuming uniform vertical gradients in mean temperature and mean wind speed. The model is built upon rapid distortion theory (RDT) following studies by Mann and by Hanazaki and Hunt, using the eddy lifetime parameterization of Mann to make the model stationary. The buoyant spectral tensor model is driven via five parameters: the viscous dissipation rate «, length scale of energy-containing eddies L, a turbulence anisotropy parameter G, gradient Richardson number (Ri) representing the local atmospheric stability, and the rate of destruction of temperature variance h u . Model output includes velocity and temperature spectra and associated cospectra, including those of longitudinal and vertical temperature fluxes. The model also produces two-point statistics, such as coherences and phases of velocity components and temperature. The statistics of uniformly sheared and stratified turbulence from the model are compared with atmospheric observations taken from the Horizontal Array Turbulence Study (HATS) field program, and model results fit observed one-dimensional spectra quite well. For highly unstable stratification, however, the model has deficiencies at low wavenumbers that limit its prediction of longitudinal velocity component spectra at scales on the order of 0.6 km. The model predicts coherences well for horizontal separations but overestimates vertical coherence with increasing separation. Finally, it is shown that the RDT output can deviate from Monin-Obukhov similarity theory.
Many reports have not specifically mentioned the full histopathological findings of IgG4-related IPTs that may hinder in refining the diagnostic criteria of IgG4RD. The IgG4-related IPTs diagnosed on biopsies with requisite features showed prompt response to steroids indicating specificity of histopathological findings in predicting treatment response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.