Electrospun membranes of polycaprolactone are widely used for biomedical applications like wound dressings and tissue engineering scaffolds. It is important to sterilize this material using the most accepted method, the gamma irradiation. In this study, we have evaluated the sterilizability of electrospun polycaprolactone membranes with gamma radiation of varying doses. The irradiated materials were assessed for the changes in morphology, crystallinity, surface degradation, hydrophilicity, mechanical property, sterility and the cell proliferation. Our results demonstrate that electrospun polycaprolactone can be effectively sterilized by gamma irradiation, however a higher dose of radiation affect the 2 materials properties. The irradiated membranes showed improved hydrophilicity and fibroblast cell proliferation.
The catalytic activity of porous platinum nanostructures, viz. platinum nanonets (PtNNs) and platinum nanoballs (PtNBs), synthesized by radiolysis were studied using two model reactions (i) electron transfer reaction between hexacyanoferrate (III) and sodium thiosulfate and (ii) the reduction of p-nitrophenol by sodium borohydride to p-aminophenol. The kinetic investigations were carried out for the platinum nanostructure-catalyzed reactions at different temperatures. The pseudofirst-order rate constant for the electron transfer reaction between hexacyanoferrate (III) and sodium thiosulfate catalyzed by PtNNs and PtNBs at 293 K are (9.1 ± 0.7) × 10(-3) min(-1) and (16.9 ± 0.6) × 10(-3) min(-1), respectively. For the PtNN- and PtNB-catalyzed reduction of p-nitrophenol to p-aminophenol by sodium borohydride, the pseudofirst-order rate constant was (8.4 ± 0.3) × 10(-2) min(-1) and (12.6 ± 2.5) × 10(-2) min(-1), respectively. The accessible surface area of the PtNNs and PtNBs determined before the reaction are 99 and 110 m(2)/g, respectively. These nanostructures exhibit significantly higher catalytic activity, consistent with the largest accessible surface area reported so far for the solid platinum nanoparticles. The equilibrium of the reactants on the surface of the platinum nanostructures played an important role in the induction time (t0) observed in the reaction. A possible role of structural modifications of PtNBs catalyzed the reaction leading to change in the accessible surface area of PtNBs is being explored to explain the nonlinear behavior in the kinetic curve. The activation energy of the PtNN- and PtNB-catalyzed reduction of p-nitrophenol are 26 and 6.4 kJ/mol, respectively. These observations open up new challenges in the field of material science to design and synthesize platinum nanostructures which could withstand such reaction conditions.
The present strategy proposes a simple and single step aqueous route for synthesizing stable, fluorescent ZnTe/dendrimer nanocomposites with varying dendrimer terminal groups. In these hybrid materials, the fluorescence of the semiconductor combines with the biomimetic properties of the dendrimer making them suitable for various biomedical applications. The ZnTe nanocomposites thus obtained demonstrate bactericidal activity against enteropathogenic bacteria without having toxic effects on the human erythrocytes. The average size of the ZnTe nanoparticles within the dendrimer matrix was in the range of 2.9-6.0 nm, and they have a good degree of crystallinity with a hexagonal crystal phase. The antibacterial activities of the ZnTe/dendrimer nanocomposites (ZnTe DNCs) as well other semiconductor nanocomposites were evaluated against enteropathogenic bacteria including multi-drug resistant Vibrio cholerae serogroup O1 and enterotoxigenic Escherichia coli (ETEC). ZnTe DNCs had significant antibacterial activity against strains of V. cholerae and ETEC with minimum inhibitory concentrations ranging from 64 to 512 μg ml(-1) and minimum bactericidal concentrations ranging from 128 to 1000 μg ml(-1). Thus, the observed results suggest that these water-soluble active nanocomposites have potential for the treatment of enteric diseases like diarrhoea and cholera.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.