The efficiency and steadiness of solar cells are dependent on the experimental conditions during the fabrication of the device. In the present review, development in the last few decades in CdTe/CdS solar cells on different conducting substrates, their characterizations, and their effect on their performances has been illustrated. The variations in the efficiency were observed for the CdTe/CdS solar cells because of not only different deposition methods but also the difference in deposition conditions. In addition to this contact, material plays a significant role in the performance of a solar cell. CdTe/CdS solar cells with cheaper, greater efficiency can be possible soon.
Nb2O5 layer were deposited on ZnO by using doctor blade method. The preparation of a bilayered ZnO/Nb2O5 photoanode was introduce for dye-sensitized solar cell (DSSC) application. Deposition of Nb2O5 layer on ZnO film improves power conversion efficiency of DSSCs. The ZnO/Nb2O5photoanode-based DSSCs show increase in photocurrent, open circuit voltage and conversion efficiency. The ZnO/Nb2O5 solar cell provides 50 mV increase of open circuit voltage, [Formula: see text] increment in current density and [Formula: see text] increment in efficiency as compare to ZnO-based DSSCs. We further analyzed the electron recombination properties of ZnO and ZnO/Nb2O5 by utilizing electrochemical impedance spectroscopy (EIS). The EIS analysis (Bode Plot) for ZnO/Nb2O5 photoanode show shifting of the peak related to electron recombination towards low frequency as compared to ZnO photoanode. Thus, there is an increase in lifetime of electrons in the ZnO/Nb2O5 photoanode, confirming that the recombination reactions are reduced in ZnO/Nb2O5 photoanode as compared to the ZnO.
The effect of two different types of polysulfide solvents (i.e., distilled water and methanol) was investigated for zirconium dioxide (ZrO2) based quantum dots sensitized solar cells (QDSSCs). This was mainly depending upon how easily the injection of electrons in the conduction band of CdS particles to the ZrO2 photoanode. Compared to that with methanol solvent-based polysulfide, distilled water-based polysulfide (S 2− /Sn 2−) electrolytes have efficient electron transportation characteristics at the interface of ZrO2/CdS photoanode and carbon counter electrode. Solar cell efficiency using distilled water-based polysulfide for ZrO2/CdS reaches 1%. The catalytic reaction due to incorporation of polysulfide solvents positively affects the solar cell performance as evident from Nyquist plots. Distilled water-based polysulfide electrolyte has significant impacts on the overall performance of QDSSCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.