Background
While our battle with the COVID-19 pandemic continues, a multitude of Omics data have been generated from patient samples in various studies. Translation of these data into clinical interventions against COVID-19 remains to be accomplished. Exploring host response to COVID-19 in the upper respiratory tract can unveil prognostic markers and therapeutic targets.
Methods
We conducted a meta-analysis of published transcriptome and proteome profiles of respiratory samples of COVID-19 patients to shortlist high confidence upregulated host factors. Subsequently, mRNA overexpression of selected genes was validated in nasal swabs from a cohort of COVID-19 positive/negative, symptomatic/asymptomatic individuals. Guided by this analysis, we sought to check for potential drug targets. An FDA-approved drug, Auranofin, was tested against SARS-CoV-2 replication in cell culture and Syrian hamster challenge model.
Findings
The meta-analysis and validation in the COVID-19 cohort revealed S100 family genes (S100A6, S100A8, S100A9, and S100P) as prognostic markers of severe COVID-19. Furthermore, Thioredoxin (TXN) was found to be consistently upregulated. Auranofin, which targets Thioredoxin reductase, was found to mitigate SARS-CoV-2 replication
in vitro.
Furthermore, oral administration of Auranofin in Syrian hamsters in therapeutic as well as prophylactic regimen reduced viral replication, IL-6 production, and inflammation in the lungs.
Interpretation
Elevated mRNA level of S100s in the nasal swabs indicate severe COVID-19 disease, and FDA-approved drug Auranofin mitigated SARS-CoV-2 replication in preclinical hamster model.
Funding
This study was supported by the DBT-IISc partnership program (DBT (IED/4/2020-MED/DBT)), the Infosys Young Investigator award (YI/2019/1106), DBT-BIRAC grant (BT/CS0007/CS/02/20) and the DBT-Wellcome Trust India Alliance Intermediate Fellowship (IA/I/18/1/503613) to ST lab.
The COVID-19 pandemic has highlighted the need for novel antivirals for pandemic management and preparedness. Targeting host processes that are co-opted by viruses is an attractive strategy for developing antivirals with a high resistance barrier. Picolinic acid (PA) is a byproduct of tryptophan metabolism, endogenously produced in humans and other mammals. Here we report broad-spectrum antiviral effects of PA against enveloped viruses, including Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), Influenza A virus (IAV), Flaviviruses, Herpes Simplex Virus, and Human Parainfluenza Virus. We further demonstrate using animal models that PA is effective against SARS-CoV-2 and IAV, especially as an oral prophylactic. The mode of action studies revealed that PA inhibits viral entry of enveloped viruses, primarily by interfering with viral-cellular membrane fusion, inhibiting virus-mediated syncytia formation, and dysregulating cellular endocytosis. Overall, our data establish PA as a broad-spectrum antiviral agent, with promising preclinical efficacy against pandemic viruses SARS-CoV-2 and IAV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.