The geotechnical construction industry is a major component of the overall construction sector and is strategically important in infrastructure development (transportation, flood and landslide protection, building foundations, waste disposal). Although industry and research in the overall construction sector have been investing significantly in recent years to produce innovative low-carbon technologies, little innovation has been created in geotechnical construction industry, which is lagging behind other construction industry sectors. This paper discusses the interplay between low-carbon geotechnical engineering and unsaturated soil mechanics based on the research carried out within the project TERRE (Marie Skłodowska-Curie Innovative Training Networks funded by the European Commission, 2015-2019,H2020-MSCA-ITN-2015-675762).
The modelling of the triggering mechanism of rainfall-induced landslides in slopes covered by pyroclastic soil (as the area surrounding Mount Vesuvius in Campania, Italy) requires the hydraulic characterization of soil in unsaturated conditions in order to analyse the slope response to rainfalls. In previous studies carried out on Campanian pyroclastic soils, the volumetric soil changes due to suction changes have been disregarded, being them negligible in soils characterized by low plasticity and low clay contents. However, a more accurate determination of the water retention curve (WRC) in terms of volumetric water content requires a correct estimation of the total soil volume, which is affected by the soil stress-state. The proper approach would require the estimation of both WRC in terms of gravimetric water content and the shrinkage curve (SC). In the present study, a relation between void ratio and suction was determined for a pyroclastic soil sampled at Mount Faito in Southern Italy. Therefore, a correction of the volumetric water content was carried out resulting in updated water retention curves. Here, the matric suction was the only factor affecting the stress-state of the soil.
Timber sheet piles are widely used to protect canal and stream banks. Quite often, riparian vegetation also grows along these retaining structures. Roots of riparian vegetation mechanically reinforce the soil with their root systems. A timber sheetpile- vegetation model is developed taking into account the mechanical reinforcement of the vegetation roots. The model uses easy to obtain physical parameters, which makes it suitable to have a preliminary estimate of how the forces on the bio engineered structure would evolve.
Timber sheet pile walls are widely used for the protection of stream banks in different parts of the world. However, there is a tendency to create more sustainable types of stream banks not only because exploitable wood is more difficult to obtain, but also because of disturbance to the natural habitat of plants and animals due to hard embankments. In the Netherlands alone, about 2500 km of engineered timber sheet pile wall embankments exist, primarily made with tropical hardwood, besides an even much larger amount of ‘non-engineered’ small-size timber-based embankments. As an alternative, the authors propose to use a mixed timber sheet pile-vegetation system, where locally available timber can be applied in combination with natural vegetation. Unlike the usual bioengineering scheme, vegetation is not seen as an element, which could replace the timber sheet piles. Instead, a new perspective is tested, where the vegetation is included as a ‘structural’ element which can even counteract the consequences of time-dependent biological degradation of the timber sheet pile. By doing so, both long-term durability as well as reliability of the stream bank is improved. A comprehensive design strategy was developed based on well-established sub-models from the literature on plant growth, root reinforcement as well as timber damage accumulation. The timber sheet pile wall-vegetation system is illustrated in an example case study. Preliminary analysis including only the mechanical reinforcement of vegetation shows that there is a decrease in moment and shear acting on the timber sheet pile with growth of the vegetation. Consequently, the damage accumulation due to load duration effects on the timber decreases and the service life of the system increases. Thus, using vegetation in combination with highly degradable timber could possibly negate the need for using hardwood timber, or more generally, save resources that are currently used for these structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.