Scalable and precise nano-patterning of graphene is an essential step for graphene-based device fabrication. Hydrogen-plasma reactions have been shown to narrow graphene only from the edges, or to selectively produce circular or hexagonal holes in the basal plane of graphene, but the underlying plasma-graphene chemistry is unknown. Here, we study the hydrogen-plasma etching of monolayer graphene supported on SiO 2 substrates across the range of plasma ion energies using scale-bridging molecular dynamics (MD) simulations based on reactive force-field potential. Our results uncover distinct etching mechanisms, operative within narrow ion energy windows, which fully explain the differing plasma-graphene reactions observed experimentally. Specific ion energy ranges are demonstrated for stable isotropic (~2 eV) versus anisotropic hole growth (~20-30 eV) within the basal plane of graphene, as well as for pure edge etching of graphene (~1 eV). Understanding the complex plasma-graphene chemistry opens up a means for controlled patterning of graphene nanostructures.
Carbon nanotubes (CNTs) are highly promising for strength reinforcement in polymer nanocomposites, but conflicting interfacial properties have been reported by single nanotube pull-out experiments. Here, we report the interfacial load transfer mechanisms during pull-out of CNTs from PMMA matrices, using massively- parallel molecular dynamics simulations. We show that the pull-out forces associated with non-bonded interactions between CNT and PMMA are generally small, and are weakly-dependent on the embedment length of the nanotube. These pull-out forces do not significantly increase with the presence of Stone Wales or vacancy defects along the nanotube. In contrast, low-density distribution of cross-links along the CNT-PMMA interface increases the pull-out forces by an order of magnitude. At each cross-linked site, mechanical unfolding and pull-out of single or pair polymer chain(s) attached to the individual cross-link bonds result in substantial interfacial strengthening and toughening, while contributing to interfacial slip between CNT and PMMA. Our interfacial shear-slip model shows that the interfacial loads are evenly-distributed among the finite number of cross-link bonds at low cross-link densities or for nanotubes with short embedment lengths. At higher cross-link densities or for nanotubes with longer embedment lengths, a no-slip zone now develops where shear-lag effects become important. Implications of these results, in the context of recent nanotube pull-out experiments, are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.