The comparison of the host immune response when challenged with pathogenic and nonpathogenic species of mycobacteria can provide answers to the unresolved question of how pathogens subvert or inhibit an effective response. We infected human monocyte derived macrophages (hMDMs) with different species of mycobacteria, in increasing order of pathogenicity, i.e. M. smegmatis, M. bovis BCG, and M. tuberculosis R179 that had been cultured in the absence of detergents. RNA was isolated post-infection and transcriptomic analysis using amplicons (Ampliseq) revealed 274 differentially expressed genes (DEGs) across three species, out of which we selected 19 DEGs for further validation. We used qRT-PCR to confirm the differential expression of 19 DEGs. We studied biological network through Ingenuity Pathway Analysis® (IPA) which revealed up-regulated pathways of the interferon and interleukin family related to the killing of M. smegmatis. Apart from interferon and interleukin family, we found one up-regulated (EIF2AK2) and two down-regulated (MT1A and TRIB3) genes as unique potential targets found by Ampliseq and qRT-PCR which may be involved in the intracellular mycobacterial killing. The roles of these genes have not previously been described in tuberculosis. Multiplex ELISA of culture supernatants showed increased host immune response toward M. smegmatis as compared to M. bovis BCG and M.tb R179. These results enhance our understanding of host immune response against M.tb infection.
ObjectivesThe host immune response towards Mycobacterium tuberculosis (M. tb) is known to vary with the virulence of mycobacterial species. While the majority of M. tb-exposed individuals develop latent TB infection (LTBI), a small proportion develops active TB disease. The milieu of understudied immune factors is believed to play an important role against host immune response towards mycobacteria. Here, we investigate the role of antiviral factors of the interferon-induced proteins with tetracopeptides (IFITs) family, which, in our previous research, have shown to be upregulated in response to pathogenic M. tb, but as yet have no established role in host response to bacterial infections. MethodsWe performed vector-driven overexpression and siRNA-mediated downregulation of IFITs in THP-1 cells infected with different mycobacterial species. Also, we investigated the mRNA levels of IFITs in the LTBI and active-TB cases.ResultsOverexpression of IFITs reduces CFUs by ~32% (30%–43%) [Median (IQR)] across three different mycobacterial strains, while knock-down increases CFUs by ~57% (41%–78%). Compared to IFN-γ, treatment of infected THP-1 cells with IFN-β significantly increases the expression of IFITs, while the overexpression of IFITs had higher mRNA expression of IFN-β than IFN-γ. Cytokines like IDO-1, IL-6, IL-23, and IFN- γ are observed to play key roles in mycobacterial survival upon IFITs intervention. mRNA expression levels of IFITs were higher in LTBI cases as compared to active TB.ConclusionHigher expression levels of IFITs reduce in vitro survival of different drug-susceptible and drug-resistant mycobacteria and correlates with latent TB infection in infected individuals, hence emerging as an immuno-therapeutic target against M. tb.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.