In a world where climate changes and power management are becoming increasingly important, research work focuses on renewable energy based smart grid to meet adequate demands of energy. The smart grid is a modernized autonomous power network that can transmit electricity effectively, conserve resources and costs, and increase the local grid's stability. As a result, a smart grid connected multilevel inverter is presented in this work. The inverter is controlled using a model predictive control algorithm with increased levels with the primary goal of controlling the injected power generated by the renewable source, improving the quality of the current waveform, lowering THD, and eliminating the shift phase among the injected current and the grid voltage in effort to match the smart grid network's requirements. Therefore, this paper aims to show the performance analysis of multilevel inverters with predictive control for renewable energy smart grids application. The major concern was observed with most of the multi-level inverters are that with increased level total harmonic distortion (THD) is increased if switching control is not designed properly. Therefore, in this case predictive control is implemented on renewable energy based smart grid inverters to increase level with minimum voltage THD and current THD. The case analyzed voltage and current THD in the different levels of multilevel inverter. The result analysis was performed on 7, 11, 17, 21, 27, 31, 37 and 41 respectively. From result analysis it was observed that minimum THD was observed with level 31, i.e., 0.35% and at level 41 it was increased up to 0.55% which is still not high as compared to other existing MLI architectures. The result findings of proposed approach decreased THD with varying levels and outperforms better as compared to other works.
Multilayer Inverter technologies have recently gained popularity as a cost-effective option for a number of engineering uses utilizing renewable sources of energy. This arrangement has a few noteworthy properties, including a lower hardware complexity, reduced switching losses, a smaller number of switches, and a better output voltage/current waveform. The reduction of total harmonic distortion is the most important requirement in multilayer inverters. Focus on the benefits; MLI technologies, including industrial equipment depending on a multilayer inverter architecture, have seen great growth. A review of traditional MLI and newly developed MLI is covered in this work. These seem to be the most extensively used power electronic devices in purposes such as motor-drive applications, solar as well as wind power MLIs, and in distribution Grids. With valuable references, this study broadly compares several types of MLIs and their appropriate uses in terms of the number of layers used,the number of switches, and Total Harmonic Distortion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.