When an oilfield is exploited by simply producing oil and gas from a number of wells, the reservoir pressure in many circumstances drops quicker than normal impacting the production rates (Koning, 1988) and well performance. To maintain the pressures in the oil producing formations, waterflooding enhancement method is implemented by the Operators. This is achieved by drilling injection wells or converting the oil producing wells into injectors. The injection wells are located at carefully selected points in the oilfield so that the water displaces as much oil as possible to the production wells before the water starts to break through. A significant saving in an oilfield development can be obtained by reducing the actual number of injecting wells and increasing each of the injector wells' capacity for injection. Balancing the injection and produced volumes often involves injecting at high pressures leading to the fracture of the reservoir rocks along a plane intersecting the wellbore. This happens when injection pressure overcomes the rock stress and its tensile strength, thereby creating an induced fracture network. With continuous injection, these fractures start propagating into the reservoir and may reach the reservoir caprock. Continuing to inject further in such a fracture system may breach the top seal integrity of the caprock leading to uncontrolled out of zone injection. The study of evaluation of downhole fracture monitoring is divided into two parts. In this paper a downhole verification approach to identify the fracture initiation point(s) is the focus. It describes the planning, execution and interpretation of the downhole data. This includes spectral acoustic monitoring and modelling of the temperature responses to quantify the injectivity profile. In paper (Kohli, Kelder, Volkov, Castelijns, & van Eijs, 2021), the direct business impact and regulatory requirements are discussed by further integration of acoustic monitoring and temperature modeling data with detailed results from downhole measurements of fracture dimensions by means of pressure fall off tests. Combined, both studies form the integrated approach that the Operator took to meet the regulatory requirements proving that the fracture network propagation remains within the reservoir and that the top seal integrity is maintained.
A saturation modelling approach is presented for fields and reservoirs under complex hydrocarbon charging history. The model resolves saturation-height functions for the primary drainage, imbibition and secondary drainage equilibriums. As part of the approach, a method of evaluating the residual hydrocarbon saturation below the initial free water level is proposed. The developed theory is based on the principle of capillary pressure-saturation hysteresis on the drainage-imbibition process in a water wet system. In this study, saturation-height models have been built with parameters determined by fitting the SCAL capillary pressure drainage and imbibition measurements. A novel approach is presented for evaluating the residual hydrocarbon saturation in relationship with the initial hydrocarbon saturation, integrating both core measurements and log saturation with a pressure depletion factor. An integrated process of modelling a primary drainage-imbibition-secondary drainage cycle based on both SCAL data and well logs is provided. Parameters for the primary drainage, imbibition and secondary drainage curves are resolved respectively. Large variety of SCAL capillary pressure data and well logs from The Netherlands and North Sea fields are used in the study. The modified van Genuchten (VG) equation provides the best fit with the core imbibition curves and has subsequently been implemented for the reservoir and field models. Examples and case studies have successfully demonstrated the modelling of the hydrocarbon saturation under imbibition and secondary drainage equilibrium, which in extreme cases could co-exist in a field. The results of the saturation-height model in a 3D reservoir model using the fluid contacts information from log data, pressure and seismic are seen to very well align with the saturation log in wells. The residual gas saturation model built from the core measurements is compared with the in-situ residual gas saturation observations from logs. The mobility of residual or trapped gas at reservoir conditions is also discussed. From the examples and case studies discussed, it can be concluded that this new approach for hydrocarbon saturation modelling for fields under a complex fluid fill history of imbibition and/or secondary drainage equilibriums is robust and can be implemented in 3D static model and considered having high potential for dynamic reservoir simulation.
Integrated analysis of data together with fit-for-purpose modelling can help in fast track maturation of opportunities. In 2012, an opportunity to increase oil by implementing waterflood was identified, and last year was further reviewed by Shell. An integrated approach helped the team to mature ten development wells within three months which were subsequently drilled and helped the operator to surpass their production targets. The field located in Western Desert, Egypt comprises of an Upper Cretaceous tidal channel system across four key reservoirs where sand thickness ranges between 2-15 m. Large uncertainties in reservoir extent, architecture and properties required the integration of data across multiple disciplines for identifying new development wells. It was recognized early on that the construction of full-field fine-scale static models would be time-consuming and hence a simplified fast-track approach was used for maturing the opportunity. Conceptual depositional models were built by integrating dipmeter data, image logs and core facies descriptions to understand the direction of continuity of tidal channels, tidal bars and mud flats. Net sand thickness maps were then constructed to represent the conceptual depositional model and integrated with the production behaviour of the wells. Production from historical wells drilled up to 2012 caused non-uniform pressure depletion across reservoirs. The pressure data from Modular Dynamic Tester (MDT), along with the production-injection history, was reviewed to identity both areal and vertical stratigraphically connected areas which were incorporated in the net sand maps. The constructed maps were quality checked with pressure and production data so as to validate the range of in-place volumes. Net sand maps, porosity maps and saturation models were combined to generate Hydrocarbon Pore Volume (HCPV) maps used to identify new well opportunities. Separate sector models were also constructed to evaluate the waterflood and to optimise the decision parameters like injector-producer spacing, injection rates, voidage replacement ratio and target reservoir pressure. A range of type curves were generated from Monte Carlo simulation runs for all key sub-surface uncertainties then was used to estimate the low, base and high case recoverable volumes for the identified well locations and patterns. The identified wells were drilled between February and August 2015 and helped increase production rates of the field by over 5,000 stb/d.A fit-for-purpose modelling using sand maps and connectivity maps can often greatly help in fast-tracking opportunity maturation and fine-scale detailed simulation modelling may not provide additional value.
For maintenance of the reservoir pressures and enhanced oil recovery in oil producing formations, waterflooding is often implemented by the Operators. This is achieved by drilling injection wells or converting the oil producing wells into injectors. The injection wells are located at carefully selected points in the oilfield so that the water displaces as much oil as possible to the production wells before the water starts to break through. A significant saving in an oilfield development can be obtained by reducing the actual number of injecting wells and increasing each of the injector wells’ capacity for injection. Balancing the injection and produced volumes often involves injecting at high pressures leading to the fracture of the reservoir rocks along a plane intersecting the wellbore. This happens when injection pressure exceeds the minimal principal stress and the tensile strength of the rock, thereby creating a hydraulic fracture. With continuous injection, these fractures start propagating into the reservoir and may reach the reservoir caprock, which may decrease the integrity and possibly lead to out of zone injection. The study of evaluation of downhole fracture monitoring is divided into two parts. In the first part of the paper (Kohli, et al., 2021), a downhole verification approach to identify the fracture initiation point(s) is the focus. It describes the planning, execution and interpretation of the downhole data. This includes spectral acoustic monitoring and modelling of the temperature responses to quantify the injectivity profile. In this second part of the paper, the direct business impact is discussed by further integration of acoustic monitoring and temperature modeling data with detailed results from of fracture dimension (height) measurement by means of pressure fall off tests. Combined, both studies form an integrated approach that the operator took to prove that the fracture network propagation remains within the reservoir and that the top seal integrity is maintained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.