Cell-free systems for gene expression have gained attention as platforms for the facile study of genetic circuits and as highly effective tools for teaching. Despite recent progress, the technology remains inaccessible for many in low- and middle-income countries due to the expensive reagents required for its manufacturing, as well as specialized equipment required for distribution and storage. To address these challenges, we deconstructed processes required for cell-free mixture preparation and developed a set of alternative low-cost strategies for easy production and sharing of extracts. First, we explored the stability of cell-free reactions dried through a low-cost device based on silica beads, as an alternative to commercial automated freeze dryers. Second, we report the positive effect of lactose as an additive for increasing protein synthesis in maltodextrin-based cell-free reactions using either circular or linear DNA templates. The modifications were used to produce active amounts of two high-value reagents: the isothermal polymerase Bst and the restriction enzyme Bsa I. Third, we demonstrated the endogenous regeneration of nucleoside triphosphates and synthesis of pyruvate in cell-free systems (CFSs) based on phosphoenol pyruvate (PEP) and maltodextrin (MDX). We exploited this novel finding to demonstrate the use of a cell-free mixture completely free of any exogenous nucleotide triphosphates (NTPs) to generate high yields of sfGFP expression. Together, these modifications can produce desiccated extracts that are 203–424-fold cheaper than commercial versions. These improvements will facilitate wider use of CFS for research and education purposes.
Transcription and translation are at the heart of metabolism and signal transduction. In this study, we developed an effective biophysical modeling approach to simulate transcription and translation processes. The model, composed of coupled ordinary differential equations, was tested by comparing simulations of two cell free synthetic circuits with experimental measurements generated in this study. First, we considered a simple circuit in which sigma factor 70 induced the expression of green fluorescent protein. This relatively simple case was then followed by a more complex negative feedback circuit in which two control genes were coupled to the expression of a third reporter gene, green fluorescent protein. Many of the model parameters were estimated from previous biophysical studies in the literature, while the remaining unknown model parameters for each circuit were estimated by minimizing the difference between model simulations and messenger RNA (mRNA) and protein measurements generated in this study. In particular, either parameter estimates from published studies were used directly, or characteristic values found in the literature were used to establish feasible ranges for the parameter estimation problem. In order to perform a detailed analysis of the influence of individual model parameters on the expression dynamics of each circuit, global sensitivity analysis was used. Taken together, the effective biophysical modeling approach captured the expression dynamics, including the transcription dynamics, for the two synthetic cell free circuits. While, we considered only two circuits here, this approach could potentially be extended to simulate other genetic circuits in both cell free and whole cell biomolecular applications as the equations governing the regulatory control functions are modular and easily modifiable. The model code, parameters, and analysis scripts are available for download under an MIT software license from the Varnerlab GitHub repository.
Cell-free systems are a widely used research tool in systems and synthetic biology and a promising platform for manufacturing of proteins and chemicals. In the past, cell-free biology was primarily used to better understand fundamental biochemical processes. Notably, E. coli cell-free extracts were used in the 1960s to decipher the sequencing of the genetic code. Since then, the transcription and translation capabilities of cell-free systems have been repeatedly optimized to improve energy efficiency and product yield. Today, cell-free systems, in combination with the rise of synthetic biology, have taken on a new role as a promising technology for just-in-time manufacturing of therapeutically important biologics and high-value small molecules. They have also been implemented at an industrial scale for the production of antibodies and cytokines. In this review, we discuss the evolution of cell-free technologies, in particular advancements in extract preparation, cell-free protein synthesis, and cell-free metabolic engineering applications. We then conclude with a discussion of the mathematical modeling of cell-free systems. Mathematical modeling of cell-free processes could be critical to addressing performance bottlenecks and estimating the costs of cell-free manufactured products.
Cell free systems are a widely used research tool in systems and synthetic biology and a promising platform for manufacturing of proteins and chemicals. In the past, cell free biology was primarily used to better understand fundamental biochemical processes. Notably, E. coli cell free extracts were used in the 1960s to decipher the sequencing of the genetic code. Since then, the transcription and translation capabilities of cell free systems have been repeatedly optimized to improve energy efficiency and protein yield. Today, cell free systems, in combination with the rise of synthetic biology, have taken on a new role as a promising technology for just in time manufacturing of therapeutically important biologics and high-value small molecules. They have also been implemented in an industrial scale for the production of antibodies and cytokines. In this review, we discuss the evolution of cell free systems, advancements in cell free protein synthesis, and cell free metabolic engineering, and conclude with discussing the importance and feasibility of mathematical modeling in cell free systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.