As the biomedical community produces datasets that are increasingly complex and high dimensional, there is a need for more sophisticated computational tools to extract biological insights. We present Multiscale PHATE, a method that sweeps through all levels of data granularity to learn abstracted biological features directly predictive of disease outcome. Built on a coarse-graining process called diffusion condensation, Multiscale PHATE learns a data topology that can be analyzed at coarse resolutions for high-level summarizations of data and at fine resolutions for detailed representations of subsets. We apply Multiscale PHATE to a coronavirus disease 2019 (COVID-19) dataset with 54 million cells from 168 hospitalized patients and find that patients who die show CD16 hi CD66b lo neutrophil and IFN-γ + granzyme B + Th17 cell responses. We also show that population groupings from Multiscale PHATE directly fed into a classifier predict disease outcome more accurately than naive featurizations of the data. Multiscale PHATE is broadly generalizable to different data types, including flow cytometry, single-cell RNA sequencing (scRNA-seq), single-cell sequencing assay for transposase-accessible chromatin (scATAC-seq), and clinical variables.Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
The development of powerful natural language models has improved the ability to learn meaningful representations of protein sequences. In addition, advances in high-throughput mutagenesis, directed evolution and next-generation sequencing have allowed for the accumulation of large amounts of labelled fitness data. Leveraging these two trends, we introduce Regularized Latent Space Optimization (ReLSO), a deep transformer-based autoencoder, which features a highly structured latent space that is trained to jointly generate sequences as well as predict fitness. Through regularized prediction heads, ReLSO introduces a powerful protein sequence encoder and a novel approach for efficient fitness landscape traversal. Using ReLSO, we explicitly model the sequence-function landscape of large labelled datasets and generate new molecules by optimizing within the latent space using gradient-based methods. We evaluate this approach on several publicly available protein datasets, including variant sets of anti-ranibizumab and green fluorescent protein. We observe a greater sequence optimization efficiency (increase in fitness per optimization step) using ReLSO compared with other approaches, where ReLSO more robustly generates high-fitness sequences. Furthermore, the attention-based relationships learned by the jointly trained ReLSO models provide a potential avenue towards sequence-level fitness attribution information. Articles NaTURe MachINe INTeLLIgeNceAn alternative to working in the sequence space is to learn a low-dimensional, semantically rich representation of peptides and proteins. These latent representations collectively form the latent space, which is easier to navigate. With this approach, a therapeutic candidate can be optimized using its latent representation, in a procedure called latent space optimization.Here we propose ReLSO, a deep transformer-based approach to protein design, which combines the powerful encoding ability of a transformer model with a bottleneck that produces information-rich, low-dimensional latent representations. The latent space in ReLSO, besides being low dimensional, is regularized to be (1) smooth with respect to structure and fitness by way of fitness prediction from the latent space, (2) continuous and interpolatable between training data points and (3) pseudoconvex on the basis of negative sampling outside the data. This highly designed latent space enables optimization directly in latent space using gradient ascent on the fitness and converges to an optimum that can then be decoded back into the sequence space.Key contributions of ReLSO include the following.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.