Purpose
The purpose of this paper is to address three key objectives. The first is the proposal of an enhanced multiobjective optimisation (MOO) solution approach for the mean and mean-variance optimisation of multiple “quality characteristics” (or “responses”), considering predictive uncertainties. The second objective is comparing the solution qualities of the proposed approach with those of existing approaches. The third objective is the proposal of a modified non-dominated sorting genetic algorithm-II (NSGA-II), which improves the solution quality for multiple response optimisation (MRO) problems.
Design/methodology/approach
The proposed solution approach integrates empirical response surface (RS) models, a simultaneous prediction interval-based MOO iterative search, and the multi-criteria decision-making (MCDM) technique to select the best implementable efficient solutions.
Findings
Implementation of the proposed approach in varied MRO problems demonstrates a significant improvement in the solution quality in worst-case scenarios. Moreover, the results indicate that the solution quality of the modified NSGA-II largely outperforms those of two existing MOO solution strategies.
Research limitations/implications
The enhanced MOO solution approach is limited to parametric RS prediction models and continuous search spaces.
Practical implications
The best-ranked solutions according to the proposed approach are derived considering the model predictive uncertainties and MCDM technique. These solutions (or process setting conditions) are expected to be more reliable for satisfying customer specification compared to point estimate-based MOO solutions in real-life implementation.
Originality/value
No evidence exists of earlier research that has demonstrated the suitability and superiority of an MOO solution approach for both mean and mean-variance MRO problems, considering RS uncertainties. Furthermore, this work illustrates the step-by-step implementation results of the proposed approach for the six selected MRO problems.
PurposeThe primary objective of this study is to propose a robust multiobjective solution search approach for a mean-variance multiple correlated quality characteristics optimisation problem, so-called “multiple response optimisation (MRO) problem”. The solution approach needs to consider response surface (RS) model parameter uncertainties, response uncertainties, process setting sensitivity and response correlation strength to derive the robust solutions iteratively.Design/methodology/approachThis study adopts a new multiobjective solution search approach to determine robust solutions for a typical mean-variance MRO formulation. A fine-tuned, non-dominated sorting genetic algorithm-II (NSGA-II) is used to derive efficient multiobjective solutions for varied mean-variance MRO problems. The iterative search considers RS model uncertainties, process setting uncertainties and response correlation structure to derive efficient fronts. The final solutions are ranked based on two different multi-criteria decision-making (MCDM) techniques.FindingsFive different mean-variance MRO cases are selected from the literature to verify the efficacy of the proposed solution approach. Results derived from the proposed solution approach are compared and contrasted with the best solution(s) derived from other approaches suggested in the literature. Comparative results indicate significant superiorities of the top-ranked predicted robust solutions in nondominated frequency, closeness-to-target and response variabilities.Research limitations/implicationsThe solution approach depends on RS modelling and considers continuous search space.Practical implicationsIn this study, promising robust solutions are expected to be more suitable for implementation than point estimate-based MOO solutions for a real-life MRO problem.Originality/valueNo evidence of earlier research demonstrates the superiority of a MOO-based iterative solution search approach for mean-variance MRO problems by simultaneously considering model uncertainties, response correlation and process setting sensitivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.