In this work, we propose the integration of Koopman operator methodology with Lyapunov-based model predictive control (LMPC) for stabilization of nonlinear systems. The Koopman operator enables global linear representations of nonlinear dynamical systems. The basic idea is to transform the nonlinear dynamics into a higher dimensional space using a set of observable functions whose evolution is governed by the linear but infinite dimensional Koopman operator. In practice, it is numerically approximated and therefore the tightness of these linear representations cannot be guaranteed which may lead to unstable closed-loop designs. To address this issue, we integrate the Koopman linear predictors in an LMPC framework which guarantees controller feasibility and closed-loop stability. Moreover, the proposed design results in a standard convex optimization problem which is computationally attractive compared to a nonconvex problem encountered when the original nonlinear model is used. We illustrate the application of this methodology on a chemical process example.
Accurate characterization of reservoir properties is of central importance to achieve a desired fracture geometry during a hydraulic fracturing process. However, the estimation of spatially varying geological properties in hydraulic fracturing is inherently ill-posed due to a limited number of measurements. In this work, parametrization is performed to reduce the dimensionality of spatially varying Young's modulus profiles via proper orthogonal decomposition (POD), and a data assimilation technique called ensemble Kalman filter (EnKF) is used to estimate the parameter values in the reduced low-dimensional subspace. Through a series of simulation results, it is demonstrated that the POD-based EnKF technique provides a process model with updated spatially varying geological parameters, which is able to make an accurate prediction of the fracture propagation dynamics in hydraulic fracturing. Next, we use the updated high-fidelity process model in a model predictive control framework to construct a closed-loop system of hydraulic fracturing to achieve uniform proppant concentration at the end of pumping.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.