With the growing popularity of wearable devices, the ability to utilize physiological data collected from these devices to predict the wearer's mental state such as mood and stress suggests great clinical applications, yet such a task is extremely challenging. In this paper, we present a general platform for personalized predictive modeling of behavioural states like students' level of stress. Through the use of Auto-encoders and Multitask learning we extend the prediction of stress to both sequences of passive sensor data and high-level covariates. Our model outperforms the state-ofthe-art in the prediction of stress level from mobile sensor data, obtaining a 45.6% improvement in F1 score on the StudentLife dataset.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.