The rise and fall of artificial neural networks is well documented in the scientific literature of both computer science and computational chemistry. Yet almost two decades later, we are now seeing a resurgence of interest in deep learning, a machine learning algorithm based on multilayer neural networks. Within the last few years, we have seen the transformative impact of deep learning in many domains, particularly in speech recognition and computer vision, to the extent that the majority of expert practitioners in those field are now regularly eschewing prior established models in favor of deep learning models. In this review, we provide an introductory overview into the theory of deep neural networks and their unique properties that distinguish them from traditional machine learning algorithms used in cheminformatics. By providing an overview of the variety of emerging applications of deep neural networks, we highlight its ubiquity and broad applicability to a wide range of challenges in the field, including QSAR, virtual screening, protein structure prediction, quantum chemistry, materials design and property prediction. In reviewing the performance of deep neural networks, we observed a consistent outperformance against nonneural networks state-of-the-art models across disparate research topics, and deep neural network based models often exceeded the "glass ceiling" expectations of their respective tasks. Coupled with the maturity of GPU-accelerated computing for training deep neural networks and the exponential growth of chemical data on which to train these networks on, we anticipate that deep learning algorithms will be a valuable tool for computational chemistry. 3 IntroductionDeep Learning is the key algorithm used in the development of AlphaGo, a Deep learning is a machine learning algorithm, not unlike those already in use in various applications in computational chemistry, from computer-aided drug design to materials property prediction. 5-8 Amongst some of its more high profile achievements include the Merck activity prediction challenge in 2012, where a deep neural network not only won the competition and outperformed Merck's internal baseline model, but did so without having a single chemist or biologist in their team. In a repeated success by a different research team, deep learning models achieved top positions in the Tox21 toxicity prediction challenge issued by NIH in 2014. 9 The unusually stellar performance of deep learning models in both predicting activity and toxicity in these recent examples, originate from the unique characteristics that distinguishes deep learning from traditional machine learning algorithms.For those unfamiliar with the intricacies of machine learning algorithms, we will highlight some of the key differences between traditional (shallow) machine learning and deep learning.The simplest example of a machine learning algorithm would be the ubiquitous least-squares linear regression. In linear regression, the underlying nature of the model is known (linear in th...
Specialized computational chemistry packages have permanently reshaped the landscape of chemical and materials science by providing tools to support and guide experimental efforts and for the prediction of atomistic and electronic properties. In this regard, electronic structure packages have played a special role by using first-principle-driven methodologies to model complex chemical and materials processes. Over the past few decades, the rapid development of computing technologies and the tremendous increase in computational power have offered a unique chance to study complex transformations using sophisticated and predictive many-body techniques that describe correlated behavior of electrons in molecular and condensed phase systems at different levels of theory. In enabling these simulations, novel parallel algorithms have been able to take advantage of computational resources to address the polynomial scaling of electronic structure methods. In this paper, we briefly review the NWChem computational chemistry suite, including its history, design principles, parallel tools, current capabilities, outreach, and outlook.
a b s t r a c tAn efficient resource allocation is a fundamental requirement in high performance computing (HPC) systems. Many projects are dedicated to large-scale distributed computing systems that have designed and developed resource allocation mechanisms with a variety of architectures and services. In our study, through analysis, a comprehensive survey for describing resource allocation in various HPCs is reported. The aim of the work is to aggregate under a joint framework, the existing solutions for HPC to provide a thorough analysis and characteristics of the resource management and allocation strategies. Resource allocation mechanisms and strategies play a vital role towards the performance improvement of all the HPCs classifications. Therefore, a comprehensive discussion of widely used resource allocation strategies deployed in HPC environment is required, which is one of the motivations of this survey. Moreover, we have classified the HPC systems into three broad categories, namely: (a) cluster, (b) grid, and (c) aforementioned systems are cataloged into pure software and hybrid/hardware solutions. The system classification is used to identify approaches followed by the implementation of existing resource allocation strategies that are widely presented in the literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.