On the wake flow of asymmetrically beveled trailing edges. Experiments in Fluids: experimental methods and their applications to fluid flow, 57(5), [78].
Particle-laden turbulent flows occur in a variety of industrial applications as well as in naturally occurring flows. While the numerical simulation of such flows has seen significant advances in recent years, it still remains a challenging problem. Many studies investigated the rheology of dense suspensions in laminar flows as well as the dynamics of point-particles in turbulence. Here we employ a fully-resolved numerical simulation based on a lattice Boltzmann scheme, to investigate turbulent flow with large neutrally buoyant particles in a pipe flow at low Reynolds number and in dilute regimes. The energy input is kept fixed resulting in a Reynolds number based on the friction velocity around 250. Two different particle radii were used giving a particle-pipe diameter ratio of 0.05 and 0.075. The number of particles is kept constant resulting in a volume fraction of 0.54% and 1.83%, respectively. We investigated Eulerian and Lagrangian statistics along with the stresslet exerted by the fluid on the spherical particles. It was observed that the high particle-to-fluid slip velocity close to the wall corresponds locally to events of high energy dissipation, which are not present in the single-phase flow. The migration of particles from the inner to the outer region of the pipe, the dependence of the stresslet on the particle radial positions and a proxy for the fragmentation rate of the particles computed using the stresslet have been investigated.
Anisotropic particles are present in many natural and industrial flows. Here we perform direct numerical simulation (DNS) of turbulent pipe flows with dispersed finite-size prolate spheroids simulated by means of the lattice Boltzmann method (LBM). We consider three different particle shapes: spheroidal (aspect ratio 2 and 3) and spherical. These three simulations are complemented with a reference simulation of a single-phase flow. For the sake of comparison, all simulations, laden or unladen have the same energy input. The flow geometry used is a straight pipe with length eight times its radius where the fluid is randomly seeded with 256 finite-size particles. The volume fraction of particles in the flow has been kept fixed at 0.48% by varying the major and minor axis of each particle such that their volume remains the same. We studied the effect of different particle shapes on particle dynamics and orientation, as well as on the flow modulation. We show that the local accumulation of spheres close to the wall decreases for spheroids with increasing aspect ratio. These spheroidal particles rotate slower than spheres near to the wall and tend to stay with their major axes aligned to the flow streamwise direction. Despite the lower rotation rates, a higher intermittency in the rotational rates was observed for spheroids and this increase at increasing the aspect ratio. The drag reduction observed for particles with higher aspect ratio have also been investigated using the one-dimensional energy and dissipation spectra. These results point to the relevance of particle shapes on their dynamics and their influence on the turbulent flow.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.