Background Neuroendocrine neoplasms (NENs) are a complex group of tumours that occur in many organs. Routinely used IHC markers for NEN diagnosis include CgA, synaptophysin, Ki67 and CD56. These have limitations including lack of correlation to clinical outcomes and their presence in non-tumour tissue. Identification of additional markers and more quantitative analyses of tumour tissue has the potential to contribute to improved clinical outcomes. We used qRT-PCR to profile the expression levels of a panel of markers in tumour and matched non-tumour tissue from a patient with a G1 pancreatic neuroendocrine tumour. Differences in mRNA levels between tumour and non-tumour tissue were compared with IHC analyses of the same sample. Case presentation An elderly man presented with lower abdominal pain for 6 months. Histological analysis identified a low grade, well differentiated pancreatic endocrine neoplasm. Twenty-seven tumour markers for neuroendocrine status, proliferation, stem cell phenotype, angiogenesis, epithelial to mesenchymal transition, cell adhesion, differentiation and tumour suppression were selected from previous studies and mRNA levels of these markers were measured in tumour and adjacent non-tumour tissue sample using qRT-PCR. IHC was carried out on the same tissue to detect the corresponding marker proteins. Of the markers analysed, seven showed higher mRNA levels in tumour relative to non-tumour tissue while thirteen had lower expression in tumour relative to non-tumour tissue. Substantial differences in mRNA levels were a gain of CgA, CD56, β-catenin, CK20, PDX1 and p53 and loss of Ki67, PCAD, CK7, CD31, MENA, ECAD, EPCAM, CDX2 and CK6. Comparison of qRT-PCR data with IHC showed correlation between fifteen markers. Conclusion Our study is unique as it included matched controls that provided a comparative assessment for tumour tissue analysis, whereas many previous studies report tumour data only. Additionally, we utilised qRT-PCR, a relatively quantitative diagnostic tool for differential marker profiling, having the advantage of being reproducible, fast, cheap and accurate. qRT-PCR has the potential to improve the defining of tumour phenotypes and, in combination with IHC may have clinical utility towards improving tumour stratification or distinguishing tumour grades. The results need to be validated with different grades of NENs and related to clinical outcomes.
Neuroendocrine neoplasms (NENs) are relatively rare neoplasms occurring predominantly in the gastrointestinal tract and pancreas. Their heterogeneity poses challenges for diagnosis and treatment. There is a paucity of markers for characterisation of NEN tumours. For routine diagnosis, immunohistochemistry of the NEN-specific markers CgA and synaptophysin and the proliferation marker Ki-67 are used. These parameters, however, are qualitative and lack the capacity to fully define the tumour phenotype. Molecules of epithelial–mesenchymal transition (EMT) are potential candidates for improved tumour characterisation. Using qRT-PCR, we measured mRNA levels of 27 tumour markers, including 25 EMT-associated markers, in tumour tissue and matched non-tumour tissues for 13 patients with pancreatic NENs. Tissue from patients with three different grades of tumour had distinctly different mRNA profiles. Of the 25 EMT-associated markers analysed, 17 were higher in G3 tissue relative to matched non-tumour tissue, including CD14, CD24, CD31, CD44, CD45, CD56, CK6, CK7, CK13, CK20, NSE, CDX2, CgA, DAXX, PCNA, laminin and Ki-67. The differences in levels of seven EMT-associated markers, Ki-67, DAXX, CD24, CD44, vimentin, laminin and PDX1 plus CgA and NSE (neuroendocrine markers) enabled a distinct molecular signature for each tumour grade to be generated. EMT molecules differentially expressed in three tumour grades have potential for use in tumour stratification and prognostication and as therapeutic targets for treatment of neuroendocrine cancers, following validation with additional samples.
Background: Neuroendocrine neoplasms (NENs) are a complex group of tumours that occur in many organs. The routinely used IHC markers for NEN diagnosis include CgA, synaptophysin, Ki67 and CD56. These have limitations, including lack of correlation to clinical outcomes and their presence in non-tumour tissue. Identification of additional markers and more quantitative analyses of tumour tissue has the potential to contribute to improved clinical outcomes. We used qRT-PCR to profile the expression levels of a panel of markers in tumour and matched non-tumour tissue from a G1 pancreatic neuroendocrine tumour. Differences in mRNA levels between tumour and non-tumour tissue were compared with IHC analyses of the same sample.Methods: Twenty-seven markers associated with tumour characteristics including neuroendocrine status, proliferation, stem cell phenotype, angiogenesis, epithelial to mesenchymal transition, cell adhesion, differentiation and tumour suppression were selected from previous studies. mRNA levels of these markers were measured in tumour and non-tumour in a G1 pancreatic tissue sample using qRT-PCR. IHC was carried out on the same tissue to detect the corresponding marker proteins. Results: Of the twenty seven markers analysed, seven showed higher mRNA levels in tumour relative to non-tumour while thirteen markers had lower expression in tumour relative to non-tumour tissue. The most substantial difference in mRNA levels were a gain of CgA, CD56, b-catenin, CK20, PDX1 and p53 and loss of Ki67, PCAD, CK7, CD31, MENA, ECAD, EPCAM, CDX2 and CK6. Comparison of qRT-PCR data with IHC showed correlation between fifteen markers.Conclusions: qRT-PCR is a relatively quantitative diagnostic tool with the advantage of being reproducible, fast, cheap and accurate. Differential marker profiling using qRT-PCR has the potential to improve the defining of tumour phenotypes and, in combination with IHC may have clinical utility towards improving stratification or distinguishing tumour grades. The inclusion of matched controls enables a more comparative analysis in comparison to many previous studies that report tumour data only. The results need to be validated in a cohort of different grades of NENs and related to clinical outcomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.