Despite advances in biology and therapeutic modalities, existence of highly tumorigenic glioma stem-like cells (GSCs) makes glioblastomas (GBMs) invincible. N6-methyl adenosine (mA), one of the abundant mRNA modifications catalyzed by methyltransferase-like 3 and 14 (METTL3/14), influences various events in RNA metabolism. Here, we report the crucial role of METTL3-mediated mA modification in GSC (neurosphere) maintenance and dedifferentiation of glioma cells. METTL3 expression is elevated in GSC and attenuated during differentiation. RNA immunoprecipitation studies identified SOX2 as a bonafide mA target of METTL3 and the mA modification of SOX2 mRNA by METTL3 enhanced its stability. The exogenous overexpression of 3'UTR-less SOX2 significantly alleviated the inhibition of neurosphere formation observed in METTL3 silenced GSCs. METTL3 binding and mA modification in vivo required intact three METTL3/mA sites present in the SOX2-3'UTR. Further, we found that the recruitment of Human antigen R (HuR) to mA-modified RNA is essential for SOX2 mRNA stabilization by METTL3. In addition, we found a preferential binding by HuR to the m6A-modified transcripts globally. METTL3 silenced GSCs showed enhanced sensitivity to γ-irradiation and reduced DNA repair as evidenced from the accumulation of γ-H2AX. Exogenous overexpression of 3'UTR-less SOX2 in METTL3 silenced GSCs showed efficient DNA repair and also resulted in the significant rescue of neurosphere formation from METTL3 silencing induced radiosensitivity. Silencing METTL3 inhibited RasV12 mediated transformation of mouse immortalized astrocytes. GBM tumors have elevated levels of METTL3 transcripts and silencing METTL3 in U87/TIC inhibited tumor growth in an intracranial orthotopic mouse model with prolonged mice survival. METTL3 transcript levels predicted poor survival in GBMs which are enriched for GSC-specific signature. Thus our study reports the importance of mA modification in GSCs and uncovers METTL3 as a potential molecular target in GBM therapy.
Despite recent advances in N6-methyladenosine (m6A) biology, the regulation of crucial RNA processing steps by the RNA methyltransferase-like 3 (METTL3) in glioma stem-like cells (GSCs) remains obscure. An integrated analysis of m6A-RIP (RNA immunoprecipitation) and total RNA-Seq of METTL3-silenced GSCs identified that m6A modification in GSCs is principally carried out by METTL3. The m6A-modified transcripts showed higher abundance compared to non-modified transcripts. Further, we showed that the METTL3 is essential for the expression of GSC-specific actively transcribed genes. Silencing METTL3 resulted in the elevation of several aberrant alternative splicing events. We also found that putative m6A reader proteins play a key role in the RNA stabilization function of METTL3. METTL3 altered A-to-I and C-to-U RNA editing events by differentially regulating RNA editing enzymes ADAR and APOBEC3A. Similar to protein-coding genes, lincRNAs (long intergenic non-coding RNAs) with m6A marks showed METTL3-dependent high expression. m6A modification of 3′UTRs appeared to result in a conformation-dependent hindrance to miRNA binding to their targets. The integrated analysis of the m6A regulome in METTL3-silenced GSCs showed global disruption in tumorigenic pathways that are indispensable for GSC maintenance and glioma progression. We conclude that METTL3 plays a vital role in many steps of RNA processing and orchestrates successful execution of oncogenic pathways in GSCs.
Medulloblastoma (MB) comprises a group of heterogeneous paediatric embryonal neoplasms of the hindbrain with strong links to early development of the hindbrain [1][2][3][4] . Mutations that activate Sonic hedgehog signalling lead to Sonic hedgehog MB in the upper rhombic lip (RL) granule cell lineage [5][6][7][8] . By contrast, mutations that activate WNT signalling lead to WNT MB in the lower RL 9,10 . However, little is known about the more commonly occurring group 4 (G4) MB, which is thought to arise in the unipolar brush cell lineage 3,4 . Here we demonstrate that somatic mutations that cause G4 MB converge on the core binding factor alpha (CBFA) complex and mutually exclusive alterations that affect CBFA2T2, CBFA2T3, PRDM6, UTX and OTX2. CBFA2T2 is expressed early in the progenitor cells of the cerebellar RL subventricular zone in Homo sapiens, and G4 MB transcriptionally resembles these progenitors but are stalled in developmental
Messenger RNA is a flexible tool box that plays a key role in the dynamic regulation of gene expression. RNA modifications variegate the message conveyed by the mRNA. Similar to DNA and histone modifications, mRNA modifications are reversible and play a key role in the regulation of molecular events. Our understanding about the landscape of RNA modifications is still rudimentary in contrast to DNA and histone modifications. The major obstacle has been the lack of sensitive detection methods since they are nonediting events. However, with the advent of next-generation sequencing techniques, RNA modifications are being identified precisely at single nucleotide resolution. In recent years, methylation at the N6 position of adenine (m 6 A) has gained the attention of RNA biologists. The m 6 A modification has a set of writers (methylases), erasers (demethylases), and readers. Here, we provide a summary of interesting facts, conflicting findings, and recent advances in the technical and functional aspects of the m 6 A epitranscriptome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.