Social media feeds are rapidly emerging as a novel avenue for the contribution and dissemination of geographic information. Among which Twitter, a popular micro-blogging service, has recently gained tremendous attention for its real-time nature. For instance, during floods, people usually tweet which enable detection of flood events by observing the twitter feeds promptly. In this paper, we propose a framework to investigate the real-time interplay between catastrophic event and peo-ples’ reaction such as flood and tweets to identify disaster zones. We have demonstrated our approach using the tweets following a flood in the state of Bihar in India during year 2017 as a case study. We construct a classifier for semantic analysis of the tweets in order to classify them into flood and non-flood categories. Subsequently, we apply natural language processing methods to extract information on flood affected areas and use elevation maps to identify potential disaster zones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.