In the era of heavy-duty transmission control protocols (TCP), adapted for extremely hi-bandwidth datacenters; the fundamental question of stable interaction with either proposed/customized active queue management(AQM) or popularly discussed Random Early Detection (RED) remains a hotly debated issue. While there are claims of "oscillation" only dynamical behavior, there are equally large number of claims which demonstrate the chaotic nature of different flavors of TCP and their AQM interaction. In this work, we provide a sound and analytical mathematical model of DTCP/D2TCP and study their interaction with threshold based packet marking policy. Our work shows that for a simple scenario this interaction is chaotic in nature and has large variability in dynamical behavior over orders of magnitude changes in parameter range as demonstrated by bifurcation diagrams. We conclude with numerical simulation evidence that chaotic behavior of protocols is inherent in their design which they inherit from their early vanilla TCP days, and it has serious implications for data-center throughput, load batching and collapse in Incast kind of scenario.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.