DARPA's Ubiquitous High-Performance Computing (UHPC) program asked researchers to develop computing systems capable of achieving energy efficiencies of 50 GOPS/Watt, assuming 2018-era fabrication technologies. This paper describes Runnemede, the research architecture developed by the Intel-led UHPC team. Runnemede is being developed through a co-design process that considers the hardware, the runtime/OS, and applications simultaneously. Near-threshold voltage operation, fine-grained power and clock management, and separate execution units for runtime and application code are used to reduce energy consumption. Memory energy is minimized through application-managed on-chip memory and direct physical addressing. A hierarchical on-chip network reduces communication energy, and a codelet-based execution model supports extreme parallelism and fine-grained tasks.We present an initial evaluation of Runnemede that shows the design process for our on-chip network, demonstrates 2-4x improvements in memory energy from explicit control of on-chip memory, and illustrates the impact of hardware-software co-design on the energy consumption of a synthetic aperture radar algorithm on our architecture.
This paper describes WOW, a distributed system that combines virtual machine, overlay networking and peer-to-peer techniques to create scalable wide-area networks of virtual workstations for high-throughput computing. The system is architected to: facilitate the addition of nodes to a pool of resources through the use of system virtual machines (VMs) and selforganizing virtual network links; to maintain IP connectivity even if VMs migrate across network domains; and to present to end-users and applications an environment that is functionally identical to a local-area network or cluster of workstations. We describe IPOP, a network virtualization technique that builds upon a novel, extensible user-level decentralized technique to discover, establish and maintain overlay links to tunnel IP packets over different transports (including UDP and TCP) and across firewalls. We evaluate latency and bandwidth overheads of IPOP and also time taken for a new node to become fully-routable over the virtual network. We also report on several experiments conducted on a testbed WOW deployment with 118 P2P router nodes over PlanetLab and 33 VMware-based VM nodes distributed across six firewalled domains. Experiments show that the testbed delivers good performance for two unmodified, representative benchmarks drawn from the life-sciences domain. We also demonstrate that the system is capable of seamlessly maintaining connectivity at the virtual IP layer for typical client/server applications (NFS, SSH, PBS) when VMs migrate across a WAN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.