Biometrics are the body measurements and calculations related to individuals. Biometrics validation is used as a form of identification of individual. Gait recognition system is one of the most advanced technology that people have been working on for a while now that takes center stage in the field of biometrics. Compared to the other types of existing systems of biometric recognition such as fingerprint detection, iris-scanning systems etc., Gait Recognition system ensures no human intervention. This paper focuses on recognition based on a person’s gait. Every person has a distinct gait pattern that is unique to every other person. To train the model CASIA-B dataset has been used. The dataset includes 124 subjects where each sample has undergone Gait Energy Image extraction. Samples with clothing and baggage have been included which changes the silhouette of the person. Therefore, the model has been trained for a wider application where people wear different type of clothing and carry-ons. A Convolutional Neural Network consisting of 8 layers has been trained which performs well on both samples of dataset and an accuracy of 95.45% was obtained on dataset not involving layers of clothing and accuracy of 91.80% was obtained for the sample with clothing and baggage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.