Despite growing evidence of the importance of melatonin and serotonin in the plant life, there is still much debate over the stability of melatonin, with extraction and analysis methods varying greatly from lab to lab with respect to time, temperature, light levels, extraction solvents, and mechanical disruption. The variability in methodology has created conflicting results that confound the comparison of studies to determine the role of melatonin in plant physiology. We here describe a fully validated method for the quantification of melatonin, serotonin and their biosynthetic precursors: tryptophan, tryptamine and N-acetylserotonin by liquid chromatography single quadrupole mass spectrometry (LC-MS) in diverse plant species and tissues. This method can be performed on a simple and inexpensive platform, and is both rapid and simple to implement. The method has excellent reproducibility and acceptable sensitivity with percent relative standard deviation (%RSD) in all matrices between 1 and 10% and recovery values of 82–113% for all analytes. Instrument detection limits were 24.4 ng/mL, 6.10 ng/mL, 1.52 ng/mL, 6.10 ng/mL, and 95.3 pg/mL, for serotonin, tryptophan, tryptamine, N-acetylserotonin and melatonin respectively. Method detection limits were 1.62 μg/g, 0.407 μg/g, 0.101 μg/g, 0.407 μg/g, and 6.17 ng/g respectively. The optimized method was then utilized to examine the issue of variable stability of melatonin in plant tissue culture systems. Media composition (Murashige and Skoog, Driver and Kuniyuki walnut or Lloyd and McCown's woody plant medium) and light (16 h photoperiod or dark) were found to have no effect on melatonin or serotonin content. A Youden trial suggested temperature as a major factor leading to degradation of melatonin. Both melatonin and serotonin appeared to be stable across the first 10 days in media, melatonin losses reached a mean minimum degradation at 28 days of approximately 90%; serotonin reached a mean minimum value of approximately 60% at 28 days. These results suggest that melatonin and serotonin show considerable stability in plant systems and these indoleamines and related compounds can be used for investigations that span over 3 weeks.
BackgroundProtoplast technologies offer unique opportunities for fundamental research and to develop novel germplasm through somatic hybridization, organelle transfer, protoclonal variation, and direct insertion of DNA. Applying protoplast technologies to develop Dutch elm disease resistant American elms (Ulmus americana L.) was proposed over 30 years ago, but has not been achieved. A primary factor restricting protoplast technology to American elm is the resistance of the cell walls to enzymatic degradation and a long lag phase prior to cell wall re-synthesis and cell division.ResultsThis study suggests that resistance to enzymatic degradation in American elm was due to water soluble phenylpropanoids. Incubating tobacco (Nicotiana tabacum L.) leaf tissue, an easily digestible species, in aqueous elm extract inhibits cell wall digestion in a dose dependent manner. This can be mimicked by p-coumaric or ferulic acid, phenylpropanoids known to re-enforce cell walls. Culturing American elm tissue in the presence of 2-aminoindane-2-phosphonic acid (AIP; 10-150 μM), an inhibitor of phenylalanine ammonia lyase (PAL), reduced flavonoid content, decreased tissue browning, and increased isolation rates significantly from 11.8% (±3.27) in controls to 65.3% (±4.60). Protoplasts isolated from callus grown in 100 μM AIP developed cell walls by day 2, had a division rate of 28.5% (±3.59) by day 6, and proliferated into callus by day 14. Heterokaryons were successfully produced using electrofusion and fused protoplasts remained viable when embedded in agarose.ConclusionsThis study describes a novel approach of modifying phenylpropanoid biosynthesis to facilitate efficient protoplast isolation which has historically been problematic for American elm. This isolation system has facilitated recovery of viable protoplasts capable of rapid cell wall re-synthesis and sustained cell division to form callus. Further, isolated protoplasts survived electrofusion and viable heterokaryons were produced. Together, these results provide the first evidence of sustained cell division, callus regeneration, and potential application of somatic cell fusion in American elm, suggesting that this source of protoplasts may be ideal for genetic manipulation of this species. The technological advance made with American elm in this study has potential implications in other woody species for fundamental and applied research which require availability of viable protoplasts.
Background: Hirschsprung disease (HD) is a developmental disorder characterized by absence of ganglia in the distal colon, resulting in a functional obstruction. It is a common cause of pediatric intestinal obstruction. Objective of present study was to evaluate a checklist of radiologic and clinical signs to determine the probability of HD in suspicious patients.Methods: In a diagnostic accuracy study, 19 children with clinical manifestations of HD attended pediatric OPD in a tertiary care teaching hospital, Haldia from January 2014 to December 2016 were assessed. A checklist was used to evaluate the items proposed by contrast enema (CE), based on six subscales, including transitional zone, rectosigmoid index (RSI), irregular contractions in aganglionic region, cobblestone appearance, filling defect due to fecaloid materials and lack of meconium defecation during the first 48 hours after birth. The patients were classified as high score and low score. Sensitivity and specificity were calculated for identifying HD, in comparison with pathologically proved or ruled out HD.Results: Of the 19 patients, 11 (57.89%) cases had HD and 08 (42.11%) cases were without HD. The mean age was 2.793 ± 4.21 months. Abdominal distension, lack of meconium defecation, and constipation were the most common clinical symptoms with frequencies of 15 (78.9%), 11 (57.8%), and 14 (73.68%), respectively. In summary, the mean sensitivity of detecting the radiological signs of transition zone, spastic colon, reversed recto-sigmoid index and the overall impression in histological confirmed HD patients are 59.09%, 49.99%, 59.09% and 56.06% respectively.Conclusions: The mean specificity of detecting the absence of the radiological signs of transition zone, spastic colon, reversed recto-sigmoid index and the overall impression in histological confirmed non-HD patients are 68.75%, 81.25%, 87.5% and 79.17% respectively. This would in turn give an overall mean specificity rate of 79.17% in successfully excluding HD with the above mentioned radiological signs from the contrast enema.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.