For Covid-19 suspected cases, it is critical to diagnose them accurately and rapidly so that they can be isolated and provided with required medical care. A self-learning automation model will be helpful to diagnose the COVID-19 suspected individual using chest X-rays. AI based designs, which utilizes chest X-rays, have been recently proposed for the detection of COVID-19. However, these approaches are either using non-public database or having a complex design. In this study we have proposed a novel framework for real time detection of coronavirus patients without manual intervention. In our framework, we have introduced a 3-step process in which initially K-means clustering, and feature extraction is performed as a data pre-processing step. In the second step, the selected features are optimized by a novel feature optimization approach based on hybrid differential evolution algorithm and particle swarm optimization. The optimized features are then feed forwarded to SVM classifier. Empirical results show that our proposed model is able to achieve 99.34% accuracy. This shows that our model is robust and sustainable in diagnosis of COVID-19 infected individual.
PurposeFeature selection is an important step for data pre-processing specially in the case of high dimensional data set. Performance of the data model is reduced if the model is trained with high dimensional data set, and it results in poor classification accuracy. Therefore, before training the model an important step to apply is the feature selection on the dataset to improve the performance and classification accuracy.Design/methodology/approachA novel optimization approach that hybridizes binary particle swarm optimization (BPSO) and differential evolution (DE) for fine tuning of SVM classifier is presented. The name of the implemented classifier is given as DEPSOSVM.FindingsThis approach is evaluated using 20 UCI benchmark text data classification data set. Further, the performance of the proposed technique is also evaluated on UCI benchmark image data set of cancer images. From the results, it can be observed that the proposed DEPSOSVM techniques have significant improvement in performance over other algorithms in the literature for feature selection. The proposed technique shows better classification accuracy as well.Originality/valueThe proposed approach is different from the previous work, as in all the previous work DE/(rand/1) mutation strategy is used whereas in this study DE/(rand/2) is used and the mutation strategy with BPSO is updated. Another difference is on the crossover approach in our case as we have used a novel approach of comparing best particle with sigmoid function. The core contribution of this paper is to hybridize DE with BPSO combined with SVM classifier (DEPSOSVM) to handle the feature selection problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.