The waves of COVID-19 infections driven by its variants continue to nullify the success we achieved through efficacious vaccines, social restrictions, testing and quarantine policies. This paper models the two major variants-driven waves by two sets of susceptible-infected-quarantined-recovered-vaccinated-deceased coupled dynamics that are modulated by the three main interventions: vaccination, quarantine and restrictions. This $$SI^2Q^2R^2VD$$
S
I
2
Q
2
R
2
V
D
system is used to demonstrate that the second major novel coronavirus wave in the US is caused by the delta variant and the corresponding rapid surge in infectious cases is driven by the unvaccinated pool of the populace. Next, a feedback control based planned vaccination strategy is derived and is shown to be able to suppress the surge in infections effectively.
This paper presents an overview of model-based (Nonlinear Model Predictive Control, Iterative Learning Control and Iterative Optimization) and model-free (Genetic-based Machine Learning and Reinforcement Learning) learning strategies for the control of wet-clutches. The benefits and drawbacks of the different methodologies are discussed, and illustrated by an experimental validation on a test bench containing wet-clutches. In general, all strategies yield a good engagement quality once they converge. The model-based strategies seems most suited for an online application, because they are inherently more robust and require a shorter convergence time. The model-free strategies meanwhile seem most suited to offline calibration procedures for complex systems where heuristic tuning rules no longer suffice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.