Contrast-enhanced magnetic resonance imaging (MRI) is an indispensable tool for diagnostic medicine. However, safety concerns related to gadolinium in commercial MRI contrast agents have emerged in recent years. For patients suffering from severe renal impairment, there is an important unmet medical need to perform contrast-enhanced MRI without gadolinium. There are also concerns over the long-term effects of retained gadolinium within the general patient population. Demand for gadolinium-free MRI contrast agents is driving a new wave of inorganic chemistry innovation as researchers explore paramagnetic transition-metal complexes as potential alternatives. Furthermore, advances in personalized care making use of molecular-level information have motivated inorganic chemists to develop MRI contrast agents that can detect pathologic changes at the molecular level. Recent studies have highlighted how reaction-based modulation of transitionmetal paramagnetism offers a highly effective mechanism to achieve MRI contrast enhancement that is specific to biochemical processes. This Viewpoint highlights how recent advances in transition-metal chemistry are leading the way for a new generation of MRI contrast agents.
Early detection of disease markers can provide higher diagnostic power and improve disease prognosis. We demonstrate the use of zinc oxide nanorod (ZnO NR) arrays in a straightforward, reliable, and ultrasensitive detection of the cytokines interleukin-18 and tumor necrosis factor-alpha. Specifically, we exploit the fluorescence-enhancing properties of ZnO NR platforms in cytokine assays involving both a pure buffer and urine. The detection sensitivity achieved using this ZnO NR method is in the subfemtogram per milliliter level, which is 3-4 orders of magnitude more sensitive than conventional assay detection limits. This unparalleled detection sensitivity is achieved without the need for indirect enzyme reactions or specialized instrumentation. We highlight various advantages of using ZnO NR arrays in the ultrasensitive profiling of cytokine levels. Key advantages include robustness of NR arrays, simple and direct assay schemes, high-throughput and multiplexing capabilities, and the ability to correlate directly measured signals to cytokine levels. In conjunction with the extremely high sensitivity demonstrated in this work, our ZnO NR array-based approach may be highly beneficial in early detection of many cytokine-implicated diseases.
Expression levels of biomarkers are generally unknown at initial diagnosis. The development of theranostic probes that do not rely on biomarker availability would expand therapy options for cancer patients, improve patient selection for nanomedicine and facilitate treatment of inoperable patients or patients with acquired therapy resistance. Herein, we report the development of star polymers, also known as nanostars, that allow for molecular imaging and/or endoradiotherapy based on passive targeting via the enhanced permeability and retention (EPR) effect.Methods: We synthesised a star copolymer, consisting of 7-8 centre-cross-linked arms that were modified with Gd3+ for magnetic resonance imaging (MRI), and functionalised either with 89Zr for in vivo quantification and positron emission tomography (PET) imaging, or with 177Lu for endoradiotherapy. 1H longitudinal relaxivities were determined over a continuum of magnetic field strengths ranging from 0.24 mT - 0.94 T at 37 °C (nuclear magnetic relaxation dispersion (NMRD) profile) and T1-weighted MRI contrast enhancement was visualized at 3 T and 7 T. PET imaging and ex vivo biodistribution studies were performed in mice bearing tumours with high EPR (CT26) or low EPR (BxPC3) characteristics. Therapy studies were performed in mice with high EPR tumours and mean absorbed organ doses were estimated for a standard human model.Results: The star copolymer with Gd3+ displayed a significantly superior contrast enhancement ability (T1 = 0.60 s) compared to the standard clinical contrast agent Gadovist (T1 = 1.0 s). Quantification of tumour accumulation using the radiolabelled nanostars in tumour-bearing mice demonstrated an exceptionally high uptake in tumours with high EPR characteristics (14.8 - 21.7 %ID/g). Uptake of the star polymers in tumours with low EPR characteristics was significantly lower (P<0.001), suggesting passive tumour accumulation of the nanostars via the EPR effect. Survival of mice treated with high dose 177Lu-labelled star polymers was significantly higher than survival of mice treated with lower therapy doses or control mice (P=0.001), demonstrating the utility of the 177Lu-labelled star polymers as platforms for endoradiotherapy.Conclusion: Our work highlights the potential of star polymers as probes for the molecular imaging of cancer tissue or for the passive delivery of radionuclides for endoradiotherapy. Their high functionalisability and high tumour accumulation emphasises their versatility as powerful tools for nanomedicine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.