This article presents a survey of simultaneous localization and mapping (SLAM) and data fusion techniques for object detection and environmental scene perception in unmanned aerial vehicles (UAVs). We critically evaluate some current SLAM implementations in robotics and autonomous vehicles and their applicability and scalability to UAVs. SLAM is envisioned as a potential technique for object detection and scene perception to enable UAV navigation through continuous state estimation. In this article, we bridge the gap between SLAM and data fusion in UAVs while also comprehensively surveying related object detection techniques such as visual odometry and aerial photogrammetry. We begin with an introduction to applications where UAV localization is necessary, followed by an analysis of multimodal sensor data fusion to fuse the information gathered from different sensors mounted on UAVs. We then discuss SLAM techniques such as Kalman filters and extended Kalman filters to address scene perception, mapping, and localization in UAVs. The findings are summarized to correlate prevalent and futuristic SLAM and data fusion for UAV navigation, and some avenues for further research are discussed.
In this paper, we propose an environment perception framework for autonomous driving using state representation learning (SRL). Unlike existing Q-learning based methods for efficient environment perception and object detection, our proposed method takes the learning loss into account under deterministic as well as stochastic policy gradient. Through a combination of variational autoencoder (VAE), deep deterministic policy gradient (DDPG), and soft actor-critic (SAC), we focus on uninterrupted and reasonably safe autonomous driving without steering off the track for a considerable driving distance. Our proposed technique exhibits learning in autonomous vehicles under complex interactions with the environment, without being explicitly trained on driving datasets. To ensure the effectiveness of the scheme over a sustained period of time, we employ a reward-penalty based system where a negative reward is associated with an unfavourable action and a positive reward is awarded for favourable actions. The results obtained through simulations on DonKey simulator show the effectiveness of our proposed method by examining the variations in policy loss, value loss, reward function, and cumulative reward for `VAE+DDPG’ and `VAE+SAC’ over the learning process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.