Here, we show that the electronic properties of a surface-supported 2-dimensional (2D) layer structure can self-texturize at nanoscale. The local electronic properties are determined by structural relaxation processes through variable adsorption stacking configurations. We demonstrate that the spatially modulated layer-buckling, which arises from the lattice mismatch and the layer/substrate coupling at the GdAu/Au(111) interface, is sufficient to locally open an energy gap of ∼0.5 eV at the Fermi level in an otherwise metallic layer. Additionally, this out-of-plane displacement of the Gd atoms patterns the character of the hybridized Gd-d states and shifts the center of mass of the Gd 4f multiplet proportionally to the lattice distortion. These findings demonstrate the close correlation between the electronic properties of the 2D-layer and its planarity. We demonstrate that the resulting template shows different chemical reactivities which may find important applications.
Self‐assembled metal phthalocyanine thin films are receiving considerable interest due to their potential technological applications. In this study, we present a comprehensive study of CoPc and FePc thin films of about 50 nm thickness on technologically relevant substrates such as SiOx/Si, indium tin oxide (ITO) and polycrystalline gold in order to investigate the substrate induced effects on molecular stacking and crystal structure. Raman spectroscopic analysis reveals lower intensity for the vibrational bands corresponding to phthalocyanine macrocycle for the CoPc and FePc thin films grown on ITO as compared to SiOx/Si due to the higher order of phthalocyanine molecules on SiOx/Si. Atomic force microscopy analysis displays higher grain size for FePc and CoPc thin films on ITO as compared to SiOx/Si and polycrystalline gold indicating towards the influence of molecule–substrate interactions on the molecular stacking. Grazing incidence X‐ray diffraction reciprocal space maps reveal that FePc and CoPc molecules adopt a combination of herringbone and brickstone arrangement on SiOx/Si and polycrystalline gold substrate, which can have significant implications on the optoelectronic properties of the films due to unique molecular stacking.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.