High-dimensional imaging features extracted from diagnostic imaging, called radiomics, are increasingly reported for diagnosis, prognosis, and response to therapy. Establishing the sensitivity of radiomic features to variation in scan protocols is necessary because acquisition and reconstruction parameters can vary widely across and within institutions. Our objective was to assess the reproducibility of radiomic features derived from computed tomography (CT) images by varying tube current (mA), noise index, and reconstruction [adaptive statistical iterative reconstruction (ASiR)], parameters increasingly varied by institutions seeking to reduce radiation dose in their patients. We extracted radiomic features from CT images of a uniform water phantom, anthropomorphic phantom, and a human scan. Scans were acquired from the phantoms with six tube currents (50, 100, 200, 300, 400, and 500 mA) and five noise index levels (12, 14, 16, 18, and 20), respectively. Scans of the phantoms and patient were reconstructed from 0% ASiR (i.e., filtered back projection) to 100% ASiR in increments of 10%. Two hundred and forty-eight well-known radiomic features were extracted from all scans. The concordance correlation coefficient was used to assess agreement of features. Our analysis suggests that image acquisition parameters (tube current, noise index) as well as the reconstruction technique strongly influence radiomic feature reproducibility and demonstrate a subset of reproducible features potentially usable in clinical practice.
The present study demonstrates that features extracted from pretreatment CT images can predict the risk of IPMN. Development of a preoperative model to discriminate between low-risk and high-risk IPMN will improve surgical decision-making.
Objectives-To measure the reproducibility of radiomic features in pancreatic parenchyma and ductal adenocarcinomas (PDAC) in patients who underwent consecutive contrast enhanced computed tomography (CECT) scans.Methods-In this IRB-approved and HIPAA-compliant retrospective study, 37 pairs of scans from 37 unique patients who underwent CECTs within a two-week interval were included in the Terms of use and reuse: academic research for non-commercial purposes, see here for full terms. http://www.springer.com/gb/openaccess/authors-rights/aam-terms-v1
A greater number of liver malignancy radiomic features were reproducible compared to liver parenchyma features, but the proportion of reproducible features decreased with increasing variations in contrast injection rates and pixel resolution.
In this paper, two novel feature extraction methods, using neighborhood structural similarity (NSS), are proposed for the characterization of mammographic masses as benign or malignant. Since gray-level distribution of pixels is different in benign and malignant masses, more regular and homogeneous patterns are visible in benign masses compared to malignant masses; the proposed method exploits the similarity between neighboring regions of masses by designing two new features, namely, NSS-I and NSS-II, which capture global similarity at different scales. Complementary to these global features, uniform local binary patterns are computed to enhance the classification efficiency by combining with the proposed features. The performance of the features are evaluated using the images from the mini-mammographic image analysis society (mini-MIAS) and digital database for screening mammography (DDSM) databases, where a tenfold cross-validation technique is incorporated with Fisher linear discriminant analysis, after selecting the optimal set of features using stepwise logistic regression method. The best area under the receiver operating characteristic curve of 0.98 with an accuracy of is achieved with the mini-MIAS database, while the same for the DDSM database is 0.93 with accuracy .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.