This paper proposes an algorithm that provides operational strategies for multiple heterogeneous mobile robot systems utilized in many real-world applications, such as deliveries, surveillance, search and rescue, monitoring, and transportation. Specifically, the authors focus on developing an algorithm that solves a min–max multiple depot heterogeneous asymmetric traveling salesperson problem (MDHATSP). The algorithm is designed based on a primal–dual technique to operate given multiple heterogeneous robots located at distinctive depots by finding a tour for each robot such that all the given targets are visited by at least one robot while minimizing the last task completion time. Building on existing work, the newly developed algorithm can solve more generalized problems, including asymmetric cost problems with a min–max objective. Though producing optimal solutions requires high computational loads, the authors aim to find reasonable sub-optimal solutions within a short computation time. The algorithm was repeatedly tested in a simulation with varying problem sizes to verify its effectiveness. The computational results show that the algorithm can produce reliable solutions to apply in real-time operations within a reasonable time.
This paper proposes an algorithm that provides operational strategies for multiple tethered autonomous underwater vehicle (T-AUV) systems for entanglement-free navigation. T-AUVs can perform underwater tasks under reliable communication and power supply, which is the most substantial benefit of their operation. Thus, if one can overcome the entanglement issues while utilizing multiple tethered vehicles, the potential applications of the system increase including ecosystem exploration, infrastructure inspection, maintenance, search and rescue, underwater construction, and surveillance. In this study, we focus on developing strategies for task allocation, path planning, and scheduling that ensure entanglement-free operations while considering workload balancing among the vehicles. We do not impose restrictions on the size or shape of the vehicles at this stage; our primary focus is on efficient tether management as an initial work on the topic. To achieve entanglement-free navigation, we propose a heuristic based on the primal-dual technique, which enables initial task allocation and path planning while minimizing the maximum travel cost of the vehicles. Although this heuristic often generates sectioned paths due to its workload-balancing nature, we also propose a mixed approach to provide feasible solutions for non-sectioned initial paths. This approach combines entanglement avoidance techniques with time scheduling and sectionalization methods. To evaluate the effectiveness of our algorithm, extensive simulations were conducted with varying problem sizes. The computational results demonstrate the potential of our algorithm to be applied in real-time operations, as it consistently generates reliable solutions within a reasonable time frame.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.