The rapid advances and adoption of smartphone technology presents a novel opportunity for delivering mental health interventions on a population scale. Despite multi-sector investment along with wide-scale advertising and availability to the general population, the evidence supporting the use of smartphone apps in the treatment of depression has not been empirically evaluated. Thus, we conducted the first meta-analysis of smartphone apps for depressive symptoms. An electronic database search in May 2017 identified 18 eligible randomized controlled trials of 22 smartphone apps, with outcome data from 3,414 participants. Depressive symptoms were reduced significantly more from smartphone apps than control conditions (g50.38, 95% CI: 0.24-0.52, p<0.001), with no evidence of publication bias. Smartphone interventions had a moderate positive effect in comparison to inactive controls (g50.56, 95% CI: 0.38-0.74), but only a small effect in comparison to active control conditions (g50.22, 95% CI: 0.10-0.33). Effects from smartphone-only interventions were greater than from interventions which incorporated other human/ computerized aspects along the smartphone component, although the difference was not statistically significant. The studies of cognitive training apps had a significantly smaller effect size on depression outcomes (p50.004) than those of apps focusing on mental health. The use of mood monitoring softwares, or interventions based on cognitive behavioral therapy, or apps incorporating aspects of mindfulness training, did not affect significantly study effect sizes. Overall, these results indicate that smartphone devices are a promising self-management tool for depression. Future research should aim to distil which aspects of these technologies produce beneficial effects, and for which populations.
Current measures of health and disease are often insensitive, episodic, and subjective. Further, these measures generally are not designed to provide meaningful feedback to individuals. The impact of high-resolution activity data collected from mobile phones is only beginning to be explored. Here we present data from mPower, a clinical observational study about Parkinson disease conducted purely through an iPhone app interface. The study interrogated aspects of this movement disorder through surveys and frequent sensor-based recordings from participants with and without Parkinson disease. Benefitting from large enrollment and repeated measurements on many individuals, these data may help establish baseline variability of real-world activity measurement collected via mobile phones, and ultimately may lead to quantification of the ebbs-and-flows of Parkinson symptoms. App source code for these data collection modules are available through an open source license for use in studies of other conditions. We hope that releasing data contributed by engaged research participants will seed a new community of analysts working collaboratively on understanding mobile health data to advance human health.
Digital technologies such as smartphones are transforming the way scientists conduct biomedical research using real-world data. Several remotely-conducted studies have recruited thousands of participants over a span of a few months. Unfortunately, these studies are hampered by substantial participant attrition, calling into question the representativeness of the collected data including generalizability of findings from these studies. We report the challenges in retention and recruitment in eight remote digital health studies comprising over 100,000 participants who participated for more than 850,000 days, completing close to 3.5 million remote health evaluations. Survival modeling surfaced several factors significantly associated(P < 1e-16) with increase in median retention time i) Clinician referral(increase of 40 days), ii) Effect of compensation (22 days), iii) Clinical conditions of interest to the study (7 days) and iv)Older adults(4 days). Additionally, four distinct patterns of daily app usage behavior that were also associated(P < 1e-10) with participant demographics were identified. Most studies were not able to recruit a representative sample, either demographically or regionally. Combined together these findings can help inform recruitment and retention strategies to enable equitable participation of populations in future digital health research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.